天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

超聲速流中剛體系統(tǒng)分離與繩系控制的數(shù)值模擬

發(fā)布時(shí)間:2018-04-13 22:25

  本文選題:動(dòng)邊界 + 多體分離。 參考:《大連理工大學(xué)》2016年博士論文


【摘要】:流體力學(xué)中大量問(wèn)題涉及到動(dòng)邊界,對(duì)這類問(wèn)題的研究有很重要的理論和應(yīng)用價(jià)值。超聲速流中剛體系統(tǒng)的分離運(yùn)動(dòng)不僅存在動(dòng)邊界,還涉及到激波、湍流等多物理過(guò)程相互作用,是一個(gè)具有挑戰(zhàn)性的課題。本文以大型復(fù)雜航天器隕落再入過(guò)程中的軌道預(yù)測(cè)和落點(diǎn)控制為研究背景,經(jīng)過(guò)合理簡(jiǎn)化,研究了超聲速流中自由剛體系統(tǒng)和繩系剛體系統(tǒng)的動(dòng)態(tài)分離過(guò)程。軟件方面,首先開(kāi)發(fā)了一個(gè)六自由度剛體求解器,剛體姿態(tài)使用四元數(shù)描述,旋轉(zhuǎn)運(yùn)動(dòng)使用四階Runge-Kutta法數(shù)值求解。通過(guò)實(shí)時(shí)操作剛體表面三角形網(wǎng)格,它能夠處理復(fù)雜形狀的剛體,且具備使剛體發(fā)生主動(dòng)變形的能力。然后使用松耦合算法,將它與開(kāi)源軟件包VTF中的流體求解器耦合,流體求解器傳遞邊界壓力信息給剛體求解器,剛體求解器傳遞表面網(wǎng)格節(jié)點(diǎn)位置和速度信息給流體求解器,采用level-set配合ghost-fluid方法施加內(nèi)置邊界條件。最終,得到了一個(gè)可用于模擬三維動(dòng)邊界問(wèn)題的并行自適應(yīng)流固耦合求解器。通過(guò)一系列數(shù)值實(shí)驗(yàn),驗(yàn)證了程序的可靠性。自由剛體系統(tǒng)方面,模擬了不同構(gòu)型的系統(tǒng)在四馬赫的超聲速流中的分離運(yùn)動(dòng)。著重研究了剛體的側(cè)向速度和流向速度與剛體的質(zhì)量比、初始間距和旋轉(zhuǎn)運(yùn)動(dòng)的關(guān)系。通過(guò)定性和定量分析,加深了對(duì)自由剛體系統(tǒng)分離運(yùn)動(dòng)過(guò)程的理解。研究結(jié)果發(fā)現(xiàn),剛體的側(cè)向分離速度在其沿激波以類似“沖浪”的形式運(yùn)動(dòng)時(shí)達(dá)到最大。給定質(zhì)量比,則存在特定的初始間距,或給定初始間距,則存在特定質(zhì)量比使剛體沿激波運(yùn)動(dòng)。剛體的形狀會(huì)影響物體的旋轉(zhuǎn)運(yùn)動(dòng),旋轉(zhuǎn)運(yùn)動(dòng)又會(huì)進(jìn)一步增大“沖浪”運(yùn)動(dòng)產(chǎn)生的側(cè)向速度。研究結(jié)果還發(fā)現(xiàn),在再入隕落飛行器返回地球時(shí),對(duì)稱性更好的內(nèi)部組件的會(huì)使其散布范圍更小繩系剛體系統(tǒng)方面,模擬了不同構(gòu)型的繩系系統(tǒng)在四馬赫的超聲速流中的分離運(yùn)動(dòng)。著重研究了系統(tǒng)質(zhì)心和較大剛體的流向速度以及系統(tǒng)的散布度與剛體的質(zhì)量比、繩系長(zhǎng)度的關(guān)系。通過(guò)定性和定量分析,發(fā)現(xiàn)繩子的存在首先能有效減小剛體系的散布范圍,其次也會(huì)改變系統(tǒng)質(zhì)心的流向速度。系統(tǒng)質(zhì)心的流向速度增大或減小與剛體質(zhì)量比有關(guān)。對(duì)于由相同部件構(gòu)成的剛體系統(tǒng),繩子的出現(xiàn)會(huì)使系統(tǒng)受到更小的阻力。與此相反,對(duì)于由不同部件構(gòu)成的隕落剛體,繩子的出現(xiàn)會(huì)增大系統(tǒng)的阻力。
[Abstract]:A large number of problems in fluid mechanics involve moving boundaries, so the study of these problems is of great theoretical and practical value.The separation motion of rigid body system in supersonic flow not only has moving boundary, but also involves the interaction of shock wave and turbulence, which is a challenging subject.In this paper, the dynamic separation process of free rigid body system and rope rigid body system in supersonic flow is studied with the background of orbit prediction and landing point control in the process of falling and reentry of large and complex spacecraft. After reasonable simplification, the dynamic separation process of the free rigid body system and the rope rigid body system in supersonic flow is studied.In software, a six-degree-of-freedom rigid body solver is developed. The rigid body attitude is described by quaternion, and the rotation motion is numerically solved by the fourth-order Runge-Kutta method.By manipulating triangular mesh on the surface of rigid body in real time, it can deal with rigid body with complex shape and has the ability to make rigid body deform actively.Then it is coupled with the fluid solver in open source software package VTF. The fluid solver transfers boundary pressure information to the rigid body solver, and the rigid body solver transfers the surface grid node position and velocity information to the fluid solver.Level-set and ghost-fluid method are used to apply the inner boundary condition.Finally, a parallel adaptive fluid-solid coupling solver can be used to simulate 3D moving boundary problems.The reliability of the program is verified by a series of numerical experiments.In the case of free rigid body system, the separation motion of the system with different configurations in four Mach supersonic flow is simulated.The relationship between lateral velocity and flow velocity of rigid body and mass ratio of rigid body, initial distance and rotation motion are studied.Through qualitative and quantitative analysis, the process of separating motion of free rigid body system is further understood.The results show that the lateral separation velocity of rigid body reaches the maximum when it moves along the shock wave in the form of "surfing".Given the mass ratio, there is a specific initial distance or a given initial distance, so that the rigid body moves along the shock wave.The shape of the rigid body will affect the rotation of the object, and the rotation will further increase the lateral velocity generated by the "surfing" movement.The study also found that, when the reentry craft returns to Earth, more symmetrical internal components will make it spread out in a smaller rope-based rigid body system.The separation motion of rope system with different configurations in four Mach supersonic flow is simulated.The relationship between the velocity of flow direction of the system centroid and the large rigid body, the dispersion degree of the system and the mass ratio of the rigid body and the length of the rope system is studied emphatically.Through qualitative and quantitative analysis, it is found that the existence of rope can reduce the dispersion range of rigid system effectively, and change the velocity of flow direction of system centroid.The increase or decrease of the flow velocity of the mass center of the system is related to the mass ratio of the rigid body.For rigid body systems with the same components, the presence of rope makes the system less resistant.In contrast, for a falling rigid body made up of different components, the appearance of the rope increases the resistance of the system.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O35

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 高文亭,尹道先;有關(guān)剛體運(yùn)動(dòng)的兩個(gè)習(xí)題解答[J];大學(xué)物理;1984年02期

2 В.В.Румянцев;劉延桂;;腔內(nèi)充有液體的剛體運(yùn)動(dòng)穩(wěn)定性[J];力學(xué)季刊;1964年04期

3 葉取源;;用耦合求解水動(dòng)力和剛體運(yùn)動(dòng)方程方法計(jì)算物體的水中彈道[J];上海交通大學(xué)學(xué)報(bào);1987年05期

4 王惠文,朱力行,馮鳴鳴;剛體群點(diǎn)的預(yù)測(cè)模型[J];北京航空航天大學(xué)學(xué)報(bào);1996年06期

5 顏振玨;力矩在剛體平衡問(wèn)題中的作用[J];黔南民族師范學(xué)院學(xué)報(bào);2004年03期

6 薛琴訪;;剛體的轉(zhuǎn)動(dòng)[J];物理通報(bào);1958年06期

7 蔡建樂(lè);關(guān)于剛體有限轉(zhuǎn)動(dòng)的描述[J];益陽(yáng)師專學(xué)報(bào);1989年05期

8 朱嘉琳,吳立德;由2D點(diǎn)匹配恢復(fù)剛體運(yùn)動(dòng)參數(shù)的魯棒估計(jì)[J];計(jì)算機(jī)學(xué)報(bào);1994年05期

9 王維;剛體位置的確定及運(yùn)動(dòng)分類[J];唐山師專學(xué)報(bào);1999年02期

10 魏躍春;擬合平面剛體運(yùn)動(dòng)軌跡的一種方法[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);1993年02期

相關(guān)會(huì)議論文 前3條

1 曹沅;;幾種剛體運(yùn)動(dòng)之間的轉(zhuǎn)換及其算法[A];幾何設(shè)計(jì)與計(jì)算的新進(jìn)展[C];2005年

2 高永明;閻慧;胡亞軍;朱臻;;Multi-Rigid-Body SpacecraftI基于動(dòng)量轉(zhuǎn)移原理的多剛體航天器碰撞動(dòng)力學(xué)建模與仿真驗(yàn)證方法研究[A];Proceedings of 14th Chinese Conference on System Simulation Technology & Application(CCSSTA’2012)[C];2012年

3 劉欣;楊為;籍慶輝;;響應(yīng)點(diǎn)和激勵(lì)點(diǎn)的選擇對(duì)工程結(jié)構(gòu)的剛體慣性參數(shù)識(shí)別精度影響[A];第九屆全國(guó)振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2007年

相關(guān)博士學(xué)位論文 前2條

1 李濤;超聲速流中剛體系統(tǒng)分離與繩系控制的數(shù)值模擬[D];大連理工大學(xué);2016年

2 陳益;具有目的域的光電穩(wěn)定跟蹤系統(tǒng)滿意控制策略[D];南京理工大學(xué);2010年

相關(guān)碩士學(xué)位論文 前10條

1 王永錕;基于交叉平面的剛體運(yùn)動(dòng)參數(shù)測(cè)量系統(tǒng)研究[D];哈爾濱工業(yè)大學(xué);2015年

2 吳永江;基于多目標(biāo)優(yōu)化的非剛體三維重建方法研究[D];浙江理工大學(xué);2015年

3 童玲玲;基于軌跡空間的非剛體三維重建算法研究[D];浙江理工大學(xué);2016年

4 李偉;有剛體約束的非剛體配準(zhǔn)[D];上海交通大學(xué);2008年

5 及增志;多目視覺(jué)輔助剛體構(gòu)件對(duì)接技術(shù)研究與實(shí)現(xiàn)[D];北方工業(yè)大學(xué);2015年

6 邊惠惠;剛體姿態(tài)控制驅(qū)動(dòng)器失效補(bǔ)償研究[D];濟(jì)南大學(xué);2011年

7 郭晉斌;基于流形運(yùn)動(dòng)群不變量的非剛體重建方法研究[D];浙江理工大學(xué);2012年

8 劉玉立;三維試衣系統(tǒng)中剛體及布料模擬物理引擎的設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2013年

9 鄒巖巖;基于灰度信息的有剛體約束的非剛體配準(zhǔn)[D];上海交通大學(xué);2008年

10 張章;基于軌跡濾波的非剛體運(yùn)動(dòng)重建方法研究[D];浙江理工大學(xué);2015年



本文編號(hào):1746478

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/1746478.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1194d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com