非線性分數(shù)階微分方程解的存在性與多重性研究
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2018
【分類號】:O175
【相似文獻】
相關期刊論文 前10條
1 王嫻;李東;;分數(shù)階混沌系統(tǒng)的間歇控制同步[J];重慶工商大學學報(自然科學版);2018年04期
2 王詩靖;王廷江;;分數(shù)階RL_α-C_β并聯(lián)諧振電路的等效電路[J];物理通報;2017年01期
3 王廷江;;分數(shù)階RL_α-C_β并聯(lián)諧振頻率簡易表達式[J];物理通報;2017年04期
4 王婷;張麗娟;達佳麗;;淺析分數(shù)階微分方程三點共振邊值問題正解的存在[J];課程教育研究;2017年32期
5 李明;陳旭;鄭永愛;;一類分數(shù)階混沌系統(tǒng)的自適應滑模同步[J];揚州大學學報(自然科學版);2016年03期
6 李特;袁建寶;吳瑩;;一類不確定分數(shù)階混沌系統(tǒng)同步的自適應滑模控制方法[J];動力學與控制學報;2017年02期
7 賴滿豐;金玲玉;;分數(shù)階Klein-Gordon-Schr?dinger方程弱解的存在性[J];佛山科學技術學院學報(自然科學版);2017年03期
8 田魏巍;;非線性分數(shù)階動力系統(tǒng)的控制研究[J];教育現(xiàn)代化;2017年22期
9 沈細群;李安平;;基于模糊神經(jīng)網(wǎng)絡的分數(shù)階混沌系統(tǒng)的同步研究[J];湖南工程學院學報(自然科學版);2017年03期
10 魏含玉;夏鐵成;;帶分數(shù)階自相容源的分數(shù)階超Broer-Kaup-Kupershmidt族[J];數(shù)學進展;2016年03期
相關會議論文 前10條
1 羅紹凱;;分數(shù)階動力學基本理論與方法的研究進展[A];第十二屆全國分析力學學術會議摘要集[C];2016年
2 孟瑞繁;殷德順;;分數(shù)階本構(gòu)模型描述流變現(xiàn)象時間效應的物理意義[A];中國力學大會-2015論文摘要集[C];2015年
3 李西成;;經(jīng)皮吸收的分數(shù)階藥物動力學模型[A];中國力學學會學術大會'2009論文摘要集[C];2009年
4 顧葆華;單梁;李軍;王執(zhí)銓;;一種新分數(shù)階混沌系統(tǒng)及其復合快速同步控制[A];2009年中國智能自動化會議論文集(第七分冊)[南京理工大學學報(增刊)][C];2009年
5 謝勇;;分數(shù)階模型神經(jīng)元的動力學行為及其同步[A];第四屆全國動力學與控制青年學者研討會論文摘要集[C];2010年
6 張碩;于永光;王亞;;帶有時滯和隨機擾動的不確定分數(shù)階混沌系統(tǒng)準同步[A];中國力學大會——2013論文摘要集[C];2013年
7 李常品;;分數(shù)階動力學的若干關鍵問題及研究進展[A];中國力學大會——2013論文摘要集[C];2013年
8 王淑英;趙建峰;常迎香;李險峰;;基于假分數(shù)階統(tǒng)一混沌系統(tǒng)同步的圖像加密[A];第十五屆全國非線性振動暨第十二屆全國非線性動力學和運動穩(wěn)定性學術會議摘要集[C];2015年
9 劉杰;董鵬真;尚鋼;;分數(shù)階非線性系統(tǒng)動力學分析中數(shù)值算法可靠性及其誘導的復雜現(xiàn)象[A];中國力學學會學術大會'2009論文摘要集[C];2009年
10 李花;南群;范周田;田甄;程妍妍;胡健;高翔;;一維皮膚分數(shù)階熱傳導方程中參數(shù)對瞬態(tài)溫度場的影響[A];第十二屆全國生物力學學術會議暨第十四屆全國生物流變學學術會議會議論文摘要匯編[C];2018年
相關博士學位論文 前10條
1 王康樂;幾類分數(shù)階微分方程的近似解析解[D];西安電子科技大學;2017年
2 郝朝鵬;雙邊分數(shù)階擴散方程的高精度和高效數(shù)值方法[D];東南大學;2017年
3 王金鳳;非線性時間分數(shù)階偏微分方程的幾類混合有限元算法分析[D];內(nèi)蒙古大學;2018年
4 趙浩然;基于平移不變空間的分數(shù)階域稀疏信號壓縮采樣方法研究[D];哈爾濱工業(yè)大學;2018年
5 Shahzad Sarwar;分數(shù)階動力學的若干問題[D];上海大學;2018年
6 劉爭光;幾類非局部問題及分數(shù)階模型的數(shù)值分析及快速計算方法研究[D];山東大學;2018年
7 徐小軍;分數(shù)階小波變換理論及應用研究[D];南京航空航天大學;2017年
8 李新秀;基于轉(zhuǎn)發(fā)的微博信息傳播動力學模型研究[D];東南大學;2014年
9 練婷婷;Banach空間中分數(shù)階發(fā)展系統(tǒng)的能控性與優(yōu)化控制問題[D];揚州大學;2018年
10 Azmat Ullah Khan Niazi;分數(shù)階中立型微分方程的穩(wěn)定性和可控性[D];安徽大學;2018年
相關碩士學位論文 前10條
1 馬效萌;變階分數(shù)階擴散方程的有限差分/譜方法[D];廈門大學;2017年
2 高云飛;基于分數(shù)導數(shù)粘彈性模型的油氣井管桿靜動力學行為分析[D];信陽師范學院;2019年
3 毛偉峰;非線性分數(shù)階微分方程解的存在性與多重性研究[D];太原理工大學;2018年
4 郭沖;時間分數(shù)階擴散方程的Sinc方法[D];西安理工大學;2019年
5 賀海燕;二維四階非線性修正時間分數(shù)階擴散方程的有限元方法[D];內(nèi)蒙古大學;2018年
6 趙芳;分數(shù)階粘滯聲波方程及其數(shù)值模擬[D];西南石油大學;2018年
7 汪佳;幾類分數(shù)階差分方程的初值問題[D];安徽大學;2019年
8 侯咪咪;關于幾類非線性分數(shù)階微分方程解的研究[D];安徽大學;2019年
9 梁水蓮;Caputo與Riemann-Liouville型分數(shù)階微分方程邊值問題解的存在性[D];天津財經(jīng)大學;2018年
10 夏晨雪;幾個帶積分邊界條件的分數(shù)階微分方程解的存在性問題[D];天津財經(jīng)大學;2018年
,本文編號:2695041
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2695041.html