計(jì)及旋轉(zhuǎn)狀態(tài)的全空冷水輪發(fā)電機(jī)多物理場(chǎng)耦合計(jì)算與分析
[Abstract]:With the further development and utilization of renewable clean energy, the power generation capacity of hydropower has been increasing. As the key power equipment to convert energy-hydrogenerator, its single unit capacity is on the rise. With the increasing of single unit capacity, the ventilation cooling and heat transfer of large capacity hydrogenerator becomes one of the key problems in its design. Taking a 250MW all-air-cooled hydrogenerator in Wuqiangxi Hydropower Station as an example, according to the actual structure size of generator and the theory of electromagnetic field, the mathematical model of 2-D electromagnetic field of generator is established. The electromagnetic field model of generator is solved by finite element method, and the distribution of magnetic field, eddy current in damping winding and air gap magnetic field are calculated and analyzed. Based on this, the eddy current loss of damping windings and the amplitude of each harmonic of air-gap magnetic field are determined. The additional losses in the rotor are calculated by numerical analysis. Based on the above theoretical analysis, according to the characteristics of internal heat transfer, cold air flow and special ventilation and cooling system structure of hydrogenerator, under the condition of rotor rotation, The physical and computational model of three-dimensional fluid-temperature coupling field in the solution domain of 250MW hydrogenerator rotor is established, and the coupling field in the rotor solution domain is calculated by using finite volume numerical method. Firstly, the variation law of temperature with time and the steady state temperature distribution of heat source member in rotor are analyzed, and the variation law of steady state temperature of heat source member along axial direction is studied. The calculated average temperature of the excitation winding is compared with the measured data to verify the correctness of the method. Secondly, the maximum temperature and average temperature of cold air in the solution domain of non-heat source components and rotors are compared and analyzed, and the temperature distributions of pole-body insulation, magnetic plate, up-and-down plate, end fluid and inter-pole fluid with uneven temperature distribution are studied. On this basis, the influence of air temperature at the inlet of the bracket on the surface heat dissipation coefficient of the excitation winding is studied. Finally, the fluid flow in the solution domain is studied, and the velocity distribution of the interpolar fluid facing and leeward is calculated and analyzed. The axial cross section velocity distribution and the hydrodynamic pressure distribution near the rotor heat source of the interpolar fluid at the yoke vent and between the adjacent yoke vents. In view of the change of the structure of the rotor yoke ventilation channel, the influence of the distance between the adjacent yoke vents on the temperature distribution of the excitation winding and the velocity distribution of the fluid near the excitation winding and the leeward side is studied. The influence of the smaller outlet width of the yoke on the temperature distribution of the excitation winding, the outer surface of the leeward side, the velocity distribution of the cross-section of the interpolar fluid in the circumferential and axial direction, and the temperature distribution of the interpolar fluid and the side of the leeward are analyzed. The maximum temperature of the excitation winding of the rotor yoke is calculated when the fault of the rotor yoke ventilation occurs in different degrees and at different locations. Because the full blockage of the yoke ventilation channel has a great influence on the maximum temperature of the excitation winding, the effect of the full blockage of the yoke ventilation duct on the polar insulation temperature, the velocity of the fluid between the poles and the velocity of the fluid in the air gap is studied.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM312
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 范鎮(zhèn)南;韓力;廖勇;董秀成;王軍;;貫流式水輪發(fā)電機(jī)空載電壓波形畸變與阻尼條損耗發(fā)熱抑制[J];電機(jī)與控制學(xué)報(bào);2016年04期
2 孫洋;林文娟;楊作鵬;李興剛;;不同裝機(jī)容量水輪發(fā)電機(jī)阻尼繞組渦流損耗影響因素分析[J];黑龍江電力;2015年03期
3 李俊卿;何龍;王棟;;雙饋式感應(yīng)發(fā)電機(jī)轉(zhuǎn)子匝間短路故障的負(fù)序分量分析[J];大電機(jī)技術(shù);2014年02期
4 楊平;周令;;水電站水輪發(fā)電機(jī)端部渦流損耗計(jì)算研究綜述[J];湖南農(nóng)機(jī);2013年03期
5 梁艷萍;張沛;陳晶;孫玉田;;1000MW空冷水輪發(fā)電機(jī)端部結(jié)構(gòu)件渦流損耗[J];電工技術(shù)學(xué)報(bào);2012年12期
6 潘峰;湯岷;劉傳坤;;220MW空冷汽輪發(fā)電機(jī)端部磁熱耦合計(jì)算[J];東方電氣評(píng)論;2012年02期
7 王成立;高慧;盧建剛;;水輪發(fā)電機(jī)定子故障下的阻尼條損耗計(jì)算[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2012年04期
8 梁艷萍;孫洋;陳晶;孫玉田;;1000MW水輪發(fā)電機(jī)不對(duì)稱(chēng)運(yùn)行時(shí)阻尼條渦流損耗計(jì)算分析[J];沈陽(yáng)工業(yè)大學(xué)學(xué)報(bào);2012年02期
9 霍菲陽(yáng);李偉力;王冬梅;;大型水輪發(fā)電機(jī)阻尼條數(shù)對(duì)電磁參數(shù)和附加損耗的影響[J];電機(jī)與控制學(xué)報(bào);2011年05期
10 周家驄;嚴(yán)碧波;;“十二五”我國(guó)水電發(fā)展應(yīng)著力解決的幾個(gè)問(wèn)題[J];中國(guó)投資;2011年04期
相關(guān)博士學(xué)位論文 前2條
1 王立坤;汽輪發(fā)電機(jī)端部電磁場(chǎng)與渦流損耗及其影響因素的研究[D];哈爾濱理工大學(xué);2015年
2 李明哲;水輪發(fā)電機(jī)不對(duì)稱(chēng)運(yùn)行阻尼繞組電流與發(fā)熱的研究[D];哈爾濱理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前7條
1 王立坤;汽輪發(fā)電機(jī)相關(guān)因素對(duì)端部瞬態(tài)磁場(chǎng)及渦流損耗的影響研究[D];哈爾濱理工大學(xué);2013年
2 張宇;大型水輪發(fā)電機(jī)阻尼節(jié)距對(duì)轉(zhuǎn)子溫度場(chǎng)的影響[D];哈爾濱理工大學(xué);2012年
3 孫洋;1000MW水輪發(fā)電機(jī)渦流與環(huán)流損耗分析計(jì)算[D];哈爾濱理工大學(xué);2011年
4 莊艷;永磁伺服電動(dòng)機(jī)電磁場(chǎng)與溫度場(chǎng)耦合計(jì)算及冷卻系統(tǒng)設(shè)計(jì)[D];沈陽(yáng)工業(yè)大學(xué);2011年
5 郝福剛;1000MW水輪發(fā)電機(jī)端部電磁場(chǎng)及結(jié)構(gòu)件損耗分析計(jì)算[D];哈爾濱理工大學(xué);2010年
6 柴峰;大型同步發(fā)電機(jī)定子繞組渦流損耗的理論分析與計(jì)算[D];哈爾濱理工大學(xué);2009年
7 熊斌;大型水輪發(fā)電機(jī)內(nèi)部流體場(chǎng)和溫度場(chǎng)的數(shù)值計(jì)算[D];哈爾濱理工大學(xué);2006年
,本文編號(hào):2420524
本文鏈接:http://www.sikaile.net/kejilunwen/shuiwenshuili/2420524.html