天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 水利工程論文 >

計(jì)及旋轉(zhuǎn)狀態(tài)的全空冷水輪發(fā)電機(jī)多物理場(chǎng)耦合計(jì)算與分析

發(fā)布時(shí)間:2019-02-12 14:39
【摘要】:隨著對(duì)可再生清潔能源的深入開(kāi)發(fā)利用,水力發(fā)電的發(fā)電容量一直呈增長(zhǎng)趨勢(shì)。作為將能量轉(zhuǎn)換的關(guān)鍵電力設(shè)備—水輪發(fā)電機(jī),其單機(jī)容量正處于上升趨勢(shì)。隨著單機(jī)容量的不斷增大,大容量水輪發(fā)電機(jī)的通風(fēng)冷卻與傳熱問(wèn)題成為其設(shè)計(jì)的關(guān)鍵性問(wèn)題之一。本文以五強(qiáng)溪電站中的一臺(tái)250MW全空冷水輪發(fā)電機(jī)為例,根據(jù)發(fā)電機(jī)的實(shí)際結(jié)構(gòu)尺寸及電磁場(chǎng)理論,建立了發(fā)電機(jī)的二維電磁場(chǎng)數(shù)學(xué)模型。采用有限元計(jì)算方法對(duì)發(fā)電機(jī)的電磁場(chǎng)模型進(jìn)行求解計(jì)算,計(jì)算分析了發(fā)電機(jī)的磁場(chǎng)分布、阻尼繞組中的渦流分布及氣隙磁場(chǎng)的分布。基于此,確定出阻尼繞組的渦流損耗和氣隙磁場(chǎng)的各次諧波幅值的大小。并通過(guò)數(shù)值解析方法計(jì)算出轉(zhuǎn)子內(nèi)的附加損耗;谝陨系睦碚摲治,根據(jù)水輪發(fā)電機(jī)內(nèi)部傳熱、冷空氣流動(dòng)及特殊的通風(fēng)冷卻系統(tǒng)結(jié)構(gòu)等特點(diǎn),在計(jì)及轉(zhuǎn)子旋轉(zhuǎn)的條件下,建立了 250MW水輪發(fā)電機(jī)轉(zhuǎn)子求解域內(nèi)的三維流體-溫度耦合場(chǎng)的物理和計(jì)算模型,并利用有限體積數(shù)值計(jì)算方法對(duì)轉(zhuǎn)子求解域內(nèi)的耦合場(chǎng)進(jìn)行了計(jì)算。首先,分析了轉(zhuǎn)子內(nèi)熱源構(gòu)件的溫度隨時(shí)間的變化規(guī)律和熱源構(gòu)件的穩(wěn)態(tài)溫度分布情況,進(jìn)一步研究了熱源構(gòu)件的穩(wěn)態(tài)溫度沿軸向的變化規(guī)律。并將計(jì)算得到的勵(lì)磁繞組平均溫度與實(shí)測(cè)數(shù)據(jù)進(jìn)行對(duì)比,驗(yàn)證了方法的正確性。其次,對(duì)比分析了非熱源構(gòu)件和轉(zhuǎn)子求解域內(nèi)冷空氣的最高溫度和平均溫度,研究了溫度分布不均勻的極身絕緣、磁極壓板、上下托板、端部流體以及極間流體的溫度分布。在此基礎(chǔ)上,研究了支架入口空氣溫度變化對(duì)勵(lì)磁繞組表面散熱系數(shù)的影響。最后,對(duì)求解域內(nèi)流體流動(dòng)進(jìn)行了研究,計(jì)算分析了極間流體迎、背風(fēng)側(cè)的速度分布、極間流體在磁軛通風(fēng)道處和相鄰磁軛通風(fēng)道之間的軸向截面速度分布以及轉(zhuǎn)子熱源附近流體的動(dòng)壓分布。針對(duì)轉(zhuǎn)子磁軛通風(fēng)道結(jié)構(gòu)改變的情況,研究了相鄰磁軛通風(fēng)道距離的增大對(duì)勵(lì)磁繞組溫度分布和勵(lì)磁繞組迎、背風(fēng)側(cè)附近流體的速度分布情況的影響。并分析了磁軛通風(fēng)道出口寬度變小的程度對(duì)勵(lì)磁繞組迎、背風(fēng)側(cè)外表面的溫度分布、極間流體在周向和軸向的截面流速分布以及極間流體迎、背風(fēng)側(cè)的溫度分布的影響。對(duì)于轉(zhuǎn)子磁軛通風(fēng)道發(fā)生堵塞故障時(shí),計(jì)算了磁軛通風(fēng)道在不同程度和不同位置發(fā)生堵塞故障時(shí)的勵(lì)磁繞組最高溫度。由于磁軛通風(fēng)道全堵塞對(duì)勵(lì)磁繞組最高溫度影響較大,因此研究了各磁軛通風(fēng)道全堵塞對(duì)極身絕緣溫度、極間流體速度及氣隙內(nèi)流體速度的影響。
[Abstract]:With the further development and utilization of renewable clean energy, the power generation capacity of hydropower has been increasing. As the key power equipment to convert energy-hydrogenerator, its single unit capacity is on the rise. With the increasing of single unit capacity, the ventilation cooling and heat transfer of large capacity hydrogenerator becomes one of the key problems in its design. Taking a 250MW all-air-cooled hydrogenerator in Wuqiangxi Hydropower Station as an example, according to the actual structure size of generator and the theory of electromagnetic field, the mathematical model of 2-D electromagnetic field of generator is established. The electromagnetic field model of generator is solved by finite element method, and the distribution of magnetic field, eddy current in damping winding and air gap magnetic field are calculated and analyzed. Based on this, the eddy current loss of damping windings and the amplitude of each harmonic of air-gap magnetic field are determined. The additional losses in the rotor are calculated by numerical analysis. Based on the above theoretical analysis, according to the characteristics of internal heat transfer, cold air flow and special ventilation and cooling system structure of hydrogenerator, under the condition of rotor rotation, The physical and computational model of three-dimensional fluid-temperature coupling field in the solution domain of 250MW hydrogenerator rotor is established, and the coupling field in the rotor solution domain is calculated by using finite volume numerical method. Firstly, the variation law of temperature with time and the steady state temperature distribution of heat source member in rotor are analyzed, and the variation law of steady state temperature of heat source member along axial direction is studied. The calculated average temperature of the excitation winding is compared with the measured data to verify the correctness of the method. Secondly, the maximum temperature and average temperature of cold air in the solution domain of non-heat source components and rotors are compared and analyzed, and the temperature distributions of pole-body insulation, magnetic plate, up-and-down plate, end fluid and inter-pole fluid with uneven temperature distribution are studied. On this basis, the influence of air temperature at the inlet of the bracket on the surface heat dissipation coefficient of the excitation winding is studied. Finally, the fluid flow in the solution domain is studied, and the velocity distribution of the interpolar fluid facing and leeward is calculated and analyzed. The axial cross section velocity distribution and the hydrodynamic pressure distribution near the rotor heat source of the interpolar fluid at the yoke vent and between the adjacent yoke vents. In view of the change of the structure of the rotor yoke ventilation channel, the influence of the distance between the adjacent yoke vents on the temperature distribution of the excitation winding and the velocity distribution of the fluid near the excitation winding and the leeward side is studied. The influence of the smaller outlet width of the yoke on the temperature distribution of the excitation winding, the outer surface of the leeward side, the velocity distribution of the cross-section of the interpolar fluid in the circumferential and axial direction, and the temperature distribution of the interpolar fluid and the side of the leeward are analyzed. The maximum temperature of the excitation winding of the rotor yoke is calculated when the fault of the rotor yoke ventilation occurs in different degrees and at different locations. Because the full blockage of the yoke ventilation channel has a great influence on the maximum temperature of the excitation winding, the effect of the full blockage of the yoke ventilation duct on the polar insulation temperature, the velocity of the fluid between the poles and the velocity of the fluid in the air gap is studied.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM312

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 范鎮(zhèn)南;韓力;廖勇;董秀成;王軍;;貫流式水輪發(fā)電機(jī)空載電壓波形畸變與阻尼條損耗發(fā)熱抑制[J];電機(jī)與控制學(xué)報(bào);2016年04期

2 孫洋;林文娟;楊作鵬;李興剛;;不同裝機(jī)容量水輪發(fā)電機(jī)阻尼繞組渦流損耗影響因素分析[J];黑龍江電力;2015年03期

3 李俊卿;何龍;王棟;;雙饋式感應(yīng)發(fā)電機(jī)轉(zhuǎn)子匝間短路故障的負(fù)序分量分析[J];大電機(jī)技術(shù);2014年02期

4 楊平;周令;;水電站水輪發(fā)電機(jī)端部渦流損耗計(jì)算研究綜述[J];湖南農(nóng)機(jī);2013年03期

5 梁艷萍;張沛;陳晶;孫玉田;;1000MW空冷水輪發(fā)電機(jī)端部結(jié)構(gòu)件渦流損耗[J];電工技術(shù)學(xué)報(bào);2012年12期

6 潘峰;湯岷;劉傳坤;;220MW空冷汽輪發(fā)電機(jī)端部磁熱耦合計(jì)算[J];東方電氣評(píng)論;2012年02期

7 王成立;高慧;盧建剛;;水輪發(fā)電機(jī)定子故障下的阻尼條損耗計(jì)算[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2012年04期

8 梁艷萍;孫洋;陳晶;孫玉田;;1000MW水輪發(fā)電機(jī)不對(duì)稱(chēng)運(yùn)行時(shí)阻尼條渦流損耗計(jì)算分析[J];沈陽(yáng)工業(yè)大學(xué)學(xué)報(bào);2012年02期

9 霍菲陽(yáng);李偉力;王冬梅;;大型水輪發(fā)電機(jī)阻尼條數(shù)對(duì)電磁參數(shù)和附加損耗的影響[J];電機(jī)與控制學(xué)報(bào);2011年05期

10 周家驄;嚴(yán)碧波;;“十二五”我國(guó)水電發(fā)展應(yīng)著力解決的幾個(gè)問(wèn)題[J];中國(guó)投資;2011年04期

相關(guān)博士學(xué)位論文 前2條

1 王立坤;汽輪發(fā)電機(jī)端部電磁場(chǎng)與渦流損耗及其影響因素的研究[D];哈爾濱理工大學(xué);2015年

2 李明哲;水輪發(fā)電機(jī)不對(duì)稱(chēng)運(yùn)行阻尼繞組電流與發(fā)熱的研究[D];哈爾濱理工大學(xué);2014年

相關(guān)碩士學(xué)位論文 前7條

1 王立坤;汽輪發(fā)電機(jī)相關(guān)因素對(duì)端部瞬態(tài)磁場(chǎng)及渦流損耗的影響研究[D];哈爾濱理工大學(xué);2013年

2 張宇;大型水輪發(fā)電機(jī)阻尼節(jié)距對(duì)轉(zhuǎn)子溫度場(chǎng)的影響[D];哈爾濱理工大學(xué);2012年

3 孫洋;1000MW水輪發(fā)電機(jī)渦流與環(huán)流損耗分析計(jì)算[D];哈爾濱理工大學(xué);2011年

4 莊艷;永磁伺服電動(dòng)機(jī)電磁場(chǎng)與溫度場(chǎng)耦合計(jì)算及冷卻系統(tǒng)設(shè)計(jì)[D];沈陽(yáng)工業(yè)大學(xué);2011年

5 郝福剛;1000MW水輪發(fā)電機(jī)端部電磁場(chǎng)及結(jié)構(gòu)件損耗分析計(jì)算[D];哈爾濱理工大學(xué);2010年

6 柴峰;大型同步發(fā)電機(jī)定子繞組渦流損耗的理論分析與計(jì)算[D];哈爾濱理工大學(xué);2009年

7 熊斌;大型水輪發(fā)電機(jī)內(nèi)部流體場(chǎng)和溫度場(chǎng)的數(shù)值計(jì)算[D];哈爾濱理工大學(xué);2006年



本文編號(hào):2420524

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/shuiwenshuili/2420524.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶835d7***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com