天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 水利工程論文 >

長江上游典型淺灘束水丁壩影響幅度研究

發(fā)布時間:2018-03-23 15:30

  本文選題:航道整治 切入點:丁壩 出處:《重慶交通大學(xué)》2017年碩士論文


【摘要】:航道整治是提高內(nèi)河航道等級、改善通航條件投資省、見效快的主要方法,束水丁壩是淺灘整治中最常見的整治建筑物。目前,對丁壩斷面上游河段的水位雍高區(qū)域及下游回水區(qū)域影響幅度研究較多,主要集中在平面區(qū)域,而對丁壩影響的水位、流量等垂向幅度還沒有得到很好研究。因此,開展束水丁壩在垂向上的影響幅度研究意義重大。本文采用二維水流數(shù)學(xué)模型、概化水槽試驗,開展不同類型實際典型淺灘整治中丁壩的影響幅度進行研究。通過對丁壩周圍水流特性進行分析和試驗,研究了丁壩幾何尺寸對流量影響幅度的變化規(guī)律,得到如下主要成果與結(jié)論:(1)對于水槽束水丁壩:丁壩對流速變化率α影響的極大值流量會隨著丁壩尺寸的變化而改變,不一定出現(xiàn)在丁壩剛好淹沒所對應(yīng)的流量,即整治流量,有可能會出現(xiàn)在更大的流量級。流速變化率α最大值主要出現(xiàn)在壩上水深超高0-2cm,流量Q=(50,100)L/s區(qū)間范圍內(nèi)。(2)隨著水槽流量增大,收縮斷面下移,流速變化率α減小,最大影響區(qū)域約在丁壩下游0-100cm之間。流速變化率α最大值出現(xiàn)對應(yīng)的流量與壩長無明顯相關(guān)性,而α最大值出現(xiàn)對應(yīng)的流量和壩高h呈正相關(guān);壩高h一定時,最大影響流量基本固定。定義了最大影響線,流量越大,最大影響線會向下游移動;丁壩的幾何尺寸對最大影響線無明顯影響。通過對半衰減流量Qbm與壩高h和壩長b的單因素分析的結(jié)果進行擬合,建立了矩形水槽束水丁壩半衰減流量Qbm與丁壩幾何尺寸的經(jīng)驗關(guān)系式,驗證吻合較好。(3)對三類典型實際淺灘控制單因素壩頂高程和壩長對來流量Q的影響幅度進行研究,控制單因素壩頂高程h和壩長b對來流量Q的影響幅度分析,確定了相應(yīng)淺灘束水丁壩最大影響流量和最大影響超高范圍。得出流速變化率α與來流量的關(guān)系、流速變化率最大值αmax與丁壩高程和長度的關(guān)系、相應(yīng)束水丁壩影響流量幅度與丁壩幾何尺寸及來流條件的經(jīng)驗關(guān)系式,驗證效果基本令人滿意。(4)分別對順直、彎曲和汊道淺灘擬定的工況進行數(shù)模流場計算,綜合上灘指標顯示船舶能夠自航上灘,并依據(jù)已得經(jīng)驗公式算出影響流量幅度,結(jié)合實際灘險成因分析,推薦了丁壩幾何尺寸。
[Abstract]:Waterway regulation is the main method to improve the grade of inland waterway, improve navigation conditions, and achieve fast results. Shuishui-dike is the most common regulation building in shoal regulation. At present, There is much research on the influence range of the upstream reach of the spur dike section on the uvula and downstream backwater area, mainly in the plane area, but the vertical amplitude of the water level and discharge of the spur dike section has not been well studied. It is of great significance to study the influence range of beam groin dam in vertical direction. In this paper, a two-dimensional flow mathematical model is used to generalize the flume test. The influence range of spur dike in different types of typical shoal regulation is studied. By analyzing and testing the characteristics of the flow around the spur dike, the variation law of the influence of the geometry size of the spur dike on the discharge amplitude is studied. The main results and conclusions are as follows: (1) the maximum flow rate of the effect of the spur dike on the velocity change rate 偽 will change with the change of the size of the spur dike, not necessarily in the discharge corresponding to the inundation of the spur dike, that is, the regulation flow rate. It is possible to appear in a larger flow level. The maximum velocity change rate 偽 is mainly found in the water depth of the dam between 0 and 2 cm, and the flow rate is within the range of Q=(50100)L/s. 2) with the increase of the flume flow rate, the shrinkage section moves down, and the velocity change rate 偽 decreases. The maximum influence area is about between the downstream 0-100cm of the spur dike. There is no obvious correlation between the maximum velocity change rate 偽 and the dam length, but there is a positive correlation between the corresponding flow rate and the dam height h, and when the dam height h is fixed, the maximum value of 偽 is positively correlated with the dam height h. The maximum influence flow is fixed basically. The maximum influence line is defined. The larger the flow rate, the more the maximum influence line will move downstream. The geometric size of spur dike has no obvious effect on the maximum influence line. The results of one-factor analysis of dam height h and dam length b are fitted with the half-attenuated flow Qbm. The empirical relationship between half-attenuation flow Qbm and geometry size of spur dike in rectangular flume is established. It is verified that it is in good agreement. The influence of single factor height and dam length on the flow Q of three typical types of actual shoal control is studied. Based on the analysis of the influence of single factor height h and dam length b on the incoming discharge Q, the maximum influence discharge and the maximum influence super high range of the corresponding shoal beam spur dam are determined. The relationship between the velocity change rate 偽 and the incoming flow rate is obtained. The relationship between the maximum velocity change rate 偽 max and the height and length of the spur dike, the empirical relationship between the influence amplitude of the corresponding beam spur dike and the geometry size and the flow condition of the spur dike, the verification effect is basically satisfactory. The mathematical model flow field calculation is carried out under the working conditions proposed by the bend and the inlet shoal. The synthetic beach index shows that the ship can sail on the beach by itself, and according to the empirical formula, the influence flow range is calculated, and combined with the analysis of the causes of the actual shoal risk, the geometric size of the spur dike is recommended.
【學(xué)位授予單位】:重慶交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U617.91

【參考文獻】

相關(guān)期刊論文 前10條

1 于廣年;王義安;章日紅;;潛壩壅水規(guī)律研究[J];水運工程;2011年08期

2 周哲宇;陶東良;哈岸英;卜海磊;;丁壩局部沖刷研究現(xiàn)狀與展望[J];人民黃河;2010年06期

3 趙志舟;呂娜;;長江上游急彎分汊河段通航整治汊道選擇[J];水運工程;2009年10期

4 陳稚聰;黑鵬飛;丁翔;;丁壩回流區(qū)水流紊動強度試驗[J];清華大學(xué)學(xué)報(自然科學(xué)版);2008年12期

5 曹艷敏;張華慶;蔣昌波;李旺生;;丁壩沖刷坑及下游回流區(qū)流場和紊動特性試驗研究[J];水動力學(xué)研究與進展A輯;2008年05期

6 陳志昌;羅小峰;;長江口深水航道治理工程物理模型試驗研究成果綜述[J];水運工程;2006年S2期

7 潘軍峰,馮民權(quán),鄭邦民,閔濤;丁壩繞流及局部沖刷坑二維數(shù)值模擬[J];四川大學(xué)學(xué)報(工程科學(xué)版);2005年01期

8 韓玉芳,陳志昌;丁壩回流長度的變化[J];水利水運工程學(xué)報;2004年03期

9 黃志才,吳國雄,程尊蘭;丁壩局部沖刷深度的計算[J];水利與建筑工程學(xué)報;2004年02期

10 黃召彪;非淹沒丁壩局部沖刷深度計算的探討[J];水運工程;2003年12期

相關(guān)博士學(xué)位論文 前2條

1 于守兵;淹沒丁壩對水流結(jié)構(gòu)的調(diào)整作用研究[D];南京水利科學(xué)研究院;2010年

2 韓玉芳;丁壩的造床作用研究[D];南京水利科學(xué)研究院;2003年

相關(guān)碩士學(xué)位論文 前1條

1 劉辛愉;庫區(qū)急灘整治措施—潛壩群水流特性研究[D];重慶交通大學(xué);2016年



本文編號:1654063

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/shuiwenshuili/1654063.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶751a4***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com