基于Chunk Folding的多租戶云數(shù)據(jù)存儲緩存管理機制
[Abstract]:With the development of network technology and the emergence of outsourcing computing and storage, a new computing model--cloud computing, is emerging. The so-called cloud computing means that the configurable shared computing resources, such as network, storage, memory, application, etc., are conveniently accessed through the network, and the supply and release of computing resources are not required or require little manual participation. As far as is concerned, SaaS (Software as a Service) is the best form of implementation of recognized cloud computing. In SaaS mode, service providers need to store data for thousands of tenants, while allocating a single database instance for each tenant requires a large amount of resources, and virtually any database instance is very low in most cases And this leads to a lot of resource waves. Fee. For this issue, a shared database shared storage mode is proposed to address resource waste such as Universal Table, Pivot Table, Chunk Foling, and so on for database instances with similar storage patterns, while in order to reduce resource waves for database instances that do not have similar storage patterns The Database Consolidation is proposed to further reduce the number of instances of the database to get economies of scale The shared storage mode and the database combination can greatly reduce the number of database instances, thus reducing the resource waste, but the cache management mechanism of the multi-tenant database built on the basis of the traditional database has the following defects or disadvantages war: (1) data block cache replacement unit The traditional database caching mechanism uses the data block as a cache unit, and under the multi-tenant shared storage architecture, any data block contains irrelevant data of a large number of other tenants, and the data block is used as a cache unit to lead to a large amount of cache resources. waste. (2) Inter-tenant cache resource points The traditional database caching mechanism lacks the concept of multi-tenancy, and for the request from the tenant, the traditional caching mechanism can cache management from the point of improving the overall performance of the database, which can lead to the resource allocation among the tenants. Extremely unreasonable, such as high-frequency access to the tenant's resources to seize the low-frequency access to the tenant, so that the SLA response time requirements of the low-frequency access tenant are not guaranteed, which is in contrast to the flexibility in the cloud computing environment and on demand characteristic phase violation. (3) Lack of cloud cache resource allocation Effective distribution mechanism. In the cloud computing environment, to get good scalability and load balance, the tenant data is divided into a plurality of data nodes for storage, and how to determine the cache contents of each node makes it possible to: (a) the SLA of the tenant The time should be met, (b) the cloud cache efficiency (the number of I/ Os) is as high as possible, the cloud cache resources consume as little as possible, and (c) each sub-node I/ O load balancing. Based on the above-mentioned problems and challenges of the multi-tenant database cache management mechanism in the cloud computing environment, combined with the characteristics of the Chunk Foling shared storage mode, from the cache replacement unit, the multi-tenant feature and the cloud cache resource association In this paper, an adaptive load dynamic cache unit generation mechanism, a cache unit I/0 valuation model and a multi-tenant are proposed. The cloud cache resource allocation mechanism. This article The main work and achievements include: (1) proposed a dynamic based on Chunk Foling The mechanism uses the physical storage mode of the tenant's request load and the tenant background Chunk Foling to share the physical storage mode of the storage structure as input, outputs a series of column (set) cache replacement units, and replaces the cache replacement unit with the data block cache replacement unit of the traditional database. can greatly reduce the delay Save and improve cache utilization. (2) give a slow The I/ O benefit valuation model of the storage unit. The model is used to query the execution plan of the optimizer and the characteristics of the Chunk Foling to obtain the I/0 benefit of each cache replacement unit, and the ratio of the benefit value to the cache space occupied by the cache replacement unit is used as the cache replacement unit. The I/0 benefit rate (half-hit rate) of each cache replacement unit is weighted according to the I/ O load condition of the current node, and the I/0 benefit rate of each cache replacement unit is weighted and corrected as a standard for measuring whether to cache the replacement unit, instead of the traditional I/ O load condition of the current node, hit rate as a measure of cache or not So that the overall benefit of the cache is improved. (3) Two types of cache allocation are given. Slightly, tenant-level and system-level cache allocation policies. The performance index of the relevant cache unit is modified. The on-line dynamic adjustment of the tenant cache allocation is realized through the tenant-level cache allocation strategy, and the system cache is realized by the system-level cache allocation policy. In order to reduce the overall cache consumption of the system, this paper presents the corresponding solution mechanism--multi-tenant cloud data storage and cache management mechanism (Multi-Tenant Memory Management for Clou) for multi-tenant databases built on the basis of the traditional database. d data storage, M3C), which is based on the tenant's SLA target to allocate cache for multi-tenancy, lowe
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TP333
【相似文獻】
相關(guān)期刊論文 前10條
1 徐濟仁,牛紀海,陳家松;WAV文件格式實例分析[J];微型機與應(yīng)用;2002年03期
2 呂學(xué)強,郭軍,姚天順;英漢機器翻譯系統(tǒng)ECT中的知識庫[J];小型微型計算機系統(tǒng);2004年08期
3 劉瑞祥 ,陳立亮 ,閔光國 ,袁浩揚;VESA高分辨模式下的FLIC動畫演示技術(shù)[J];電子與電腦;1996年10期
4 李軍;立體漢字動畫的制作、編輯與特技播放[J];電腦編程技巧與維護;1998年11期
5 陳立群;INFORMIX數(shù)據(jù)庫應(yīng)用[J];中國金融電腦;2000年06期
6 姚建東,秦軍,古志民;兩種新的緩沖區(qū)溢出攻擊原理及防范[J];計算機工程與應(yīng)用;2003年10期
7 胡艷維;活用ASP把圖片上傳到數(shù)據(jù)庫[J];萍鄉(xiāng)高等專科學(xué)校學(xué)報;2003年04期
8 田新宇;馬永強;王偉;;網(wǎng)絡(luò)存儲陣列中CACHE的設(shè)計[J];計算機系統(tǒng)應(yīng)用;2011年06期
9 吉根林;Windows的多媒體世界[J];多媒體世界;1994年06期
10 董歡慶,李戰(zhàn)懷,王彥龍,石維盛;Linux卷管理系統(tǒng)Snapshot技術(shù)的分析與研究[J];計算機工程;2004年02期
相關(guān)會議論文 前10條
1 劉昱;陳紅;王珊;;基于Chunk的緩存優(yōu)化與管理[A];第二十一屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報告篇)[C];2004年
2 盧艷民;焦有章;陳紅;;基于語義Chunk的動態(tài)實體化視圖技術(shù)[A];第二十二屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(研究報告篇)[C];2005年
3 田新鋒;李戰(zhàn)懷;朱巖;;CHUNK中的多維數(shù)據(jù)壓縮[A];第十八屆全國數(shù)據(jù)庫學(xué)術(shù)會議論文集(研究報告篇)[C];2001年
4 印瑩;鮑玉斌;趙宇海;孫煥良;于戈;;Q-Dwarf——語義OLAP壓縮算法Dwarf的快速實現(xiàn)[A];第二十一屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(研究報告篇)[C];2004年
5 ;Peer-assisted Video-on-Demand with an Informed Interface of Chunk Availability[A];Proceedings 2010 IEEE 2nd Symposium on Web Society[C];2010年
6 李娜;陳紅;;CWMIV:使用改進的多版本進行并發(fā)控制[A];第二十一屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報告篇)[C];2004年
7 張新宇;王珊;陳紅;杜小勇;;基于三級索引機制的并行數(shù)據(jù)倉庫的存儲結(jié)構(gòu)[A];第十九屆全國數(shù)據(jù)庫學(xué)術(shù)會議論文集(研究報告篇)[C];2002年
8 陳湘川;張達人;唐孝威;;視空間短時記憶的超廣度研究[A];第八屆全國心理學(xué)學(xué)術(shù)會議文摘選集[C];1997年
9 周玉;宗成慶;徐波;;基于多層過濾的統(tǒng)計機器翻譯[A];第二屆全國學(xué)生計算語言學(xué)研討會論文集[C];2004年
10 任登君;李珩;張俐;姚天順;;基于詞對齊的雙語組塊對齊[A];第二屆全國學(xué)生計算語言學(xué)研討會論文集[C];2004年
相關(guān)重要報紙文章 前10條
1 重慶 甘露;在Linux中實現(xiàn)RAID[N];電腦報;2001年
2 廣東 李鋒;妙用 Cache 優(yōu)化 Windows 2000[N];電腦報;2001年
3 龍哥;軟件應(yīng)用問答![N];中國計算機報;2004年
4 t920(ChinaUnix 安全版版主);一次Web服務(wù)器滲透測試經(jīng)驗(上)[N];計算機世界;2004年
5 記者 齊芳;“頓悟”是怎么發(fā)生的[N];光明日報;2011年
6 王偉鋒;系統(tǒng)管理類[N];中國計算機報;2001年
7 徐志忠;保險行銷與教練魔法[N];中國保險報;2003年
8 張友偉;3D MAX影視動畫大制作(未完待續(xù))[N];電腦報;2001年
9 于海軍;內(nèi)存也需要保潔[N];中國電腦教育報;2003年
10 山東省蓬萊市電業(yè)公司信息中心 孫開云;在Redhat Linux AS 4下實現(xiàn)軟件RAID[N];計算機世界;2005年
相關(guān)博士學(xué)位論文 前4條
1 王燦;基于在線重復(fù)數(shù)據(jù)消除的海量數(shù)據(jù)處理關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2012年
2 萬成威;基于P2P流媒體模型的流量特征分析及實時分類[D];解放軍信息工程大學(xué);2012年
3 鄧亞丹;面向共享Cache多核處理器的數(shù)據(jù)庫查詢執(zhí)行優(yōu)化技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2009年
4 張坤;面向多租戶應(yīng)用的云數(shù)據(jù)隱私保護機制研究[D];山東大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 姚金成;基于Chunk Folding的多租戶云數(shù)據(jù)存儲緩存管理機制[D];山東大學(xué);2012年
2 卓亞芬;ChunkedLOD—海量地形的實時繪制系統(tǒng)[D];浙江大學(xué);2004年
3 趙紀元;面向文景轉(zhuǎn)換的中文語義角色標注研究[D];哈爾濱工業(yè)大學(xué);2007年
4 吉音(Girum Dagnaw Dubale);云備份系統(tǒng)中閃存輔助分段式布隆過濾器的研究[D];華中科技大學(xué);2012年
5 王宇;基于多租戶SaaS的模式映射技術(shù)[D];吉林大學(xué);2012年
6 吳欣鎧;結(jié)合memcached技術(shù)的社交游戲《人人城市》的設(shè)計與實現(xiàn)[D];南京大學(xué);2012年
7 宋揚;基于混合傳送機制的P2P節(jié)點緩存策略的研究[D];北京郵電大學(xué);2012年
8 羅皓;RTMP媒體流嵌入SIP軟交換網(wǎng)絡(luò)的研究與實現(xiàn)[D];華南理工大學(xué);2012年
9 陳香香;云計算中MapReduce性能優(yōu)化及應(yīng)用[D];重慶大學(xué);2011年
10 張軼彬;分布式文件系統(tǒng)客戶端的設(shè)計與實現(xiàn)[D];上海交通大學(xué);2011年
,本文編號:2494596
本文鏈接:http://www.sikaile.net/kejilunwen/jisuanjikexuelunwen/2494596.html