基于散射、熒光光譜分析技術(shù)高靈敏檢測環(huán)境水樣中全氟化合物
本文選題:全氟辛烷磺酸 + 全氟辛酸 ; 參考:《西南大學》2017年碩士論文
【摘要】:全氟化合物(Perfluorinated chemicals,PFCs)自1960s以來,已廣泛用于工業(yè)(如被用作表面活性劑、聚合物添加劑和阻燃劑等)和商業(yè)領(lǐng)域中(如各種家居用品等)。其中,全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)是兩種典型的PFCs,也是多種PFCs在環(huán)境中最終的代謝產(chǎn)物。它們在全球廣泛分布,具有環(huán)境持久性、生物積累性、潛在的毒性及遠距離遷移能力,可在環(huán)境中和生物體內(nèi)富集。此外,由于PFOA和PFOS比其他的PFCs有更高的水溶性,因此可以很容易的在水環(huán)境中傳播擴散。目前在廢水、地表水、地下水甚至自來水中均檢測到PFOA和PFOS。由其造成的環(huán)境污染問題近年來引起了人們的廣泛關(guān)注,并已被列入持久性有機污染物(POPs)。因此,開發(fā)一種簡單、快速、高靈敏檢測PFCs的方法非常重要,這在環(huán)境監(jiān)測和評估中也具有十分重要的意義。本文基于共振光散射(RLS)技術(shù)和熒光分析技術(shù)建立了檢測PFCs的光譜分析方法,探討了體系的作用機理并將方法應用于環(huán)境水樣中PFCs含量的分析測定,具體內(nèi)容包括如下:(1)報道了一種基于結(jié)晶紫(Crystal violet,CV)染料檢測PFOA的RLS分析方法,該方法具有簡單、高速、低成本等優(yōu)點。在pH為3.23的BR緩沖溶液中,PFOA通過靜電及疏水間的相互作用與質(zhì)子化的CV結(jié)合生成離子締合物,導致體系散射信號增強。并分別在277.0 nm,320.0 nm和507.0 nm處出現(xiàn)三個散射信號峰。三個峰處的IRLS均隨PFOA濃度的增加而增加,且分別在1.0~20.0μmol/L(R12=0.9985),0.10~25.0μmol/L(R22=0.9998)和1.0~20.0μmol/L(R32=0.9971)濃度范圍內(nèi)呈線性關(guān)系。隨著PFOA濃度增加,在320.0 nm處的IRLS信號比在277.0 nm和507.0 nm處的IRLS信號更靈敏。因此,在本實驗中選擇320.0 nm作為定量分析波長,最低檢出限為11.0 nmol/L。據(jù)此建立了PFOA的RLS分析方法。利用紫外/可見光譜、掃描電鏡顯微成像(Scanning electron microscope,SEM)對實驗機理進行了探討,并優(yōu)化了實驗條件。該方法簡單、快速、且成本低廉,并成功地用于自來水和嘉陵江水樣中PFOA的測定;厥章试91.36~104.8%之間,RSD≤4.04%。(2)研究了甲基綠(Methyl green,MG)與PFOS相互作用后共振光散射(Resonance light scattering,RLS)光譜的變化,據(jù)此建立了檢測PFOS的RLS分析方法。該方法簡單、快速,并具有極高的選擇性。實驗發(fā)現(xiàn),在pH為6.86的Britton-Robinson(BR)緩沖溶液中,PFOS與質(zhì)子化的MG通過靜電引力和疏水作用力形成離子締合物,在272.0 nm、330.0 nm和504.0 nm三個波長處的IRLS均隨PFOS濃度的增加而增加,并分別在0~3.0μmol/L(R12=0.9999),0~25.0μmol/L(R22=0.9959)和0~15.0μmol/L(R32=0.9910)濃度范圍內(nèi)成正比。由于在330.0 nm處的IRLS信號比在272.0 nm和504.0 nm處的IRLS信號更靈敏、線性范圍更寬。因此,在本實驗中選擇330.0 nm作為定量分析波長,檢出限為50.0 nmol//L。實驗還發(fā)現(xiàn),PFOS可與MG通過靜電作用和疏水間的相互作用導致體系的RLS強度增加,而PFOA以及其他的全氟類化合物并不能與MG作用,對本體系的RLS也無影響。據(jù)此實現(xiàn)了對PFOS的選擇性檢測。該方法成功地用于自來水和嘉陵江水樣中PFOS的測定,回收率在98.81~107.38%之間,RSD≤4.36%。(3)利用水溶性的巰基乙胺(CA)包被的碲化鎘量子點(CdTe QDs)設計了一種簡單快速的熒光探針,用于檢測環(huán)境中的痕量全氟化合物(PFCs)。實驗發(fā)現(xiàn),在pH 3.23的BR緩沖溶液中,隨著PFCs濃度增加,CdTe QDs的熒光強度呈下降趨勢,并分別在PFOA和PFOS濃度為0~10.0 nmol/L(R12=0.9996)和0~15.0 nmol/L(R22=0.9991)的范圍內(nèi)呈線性關(guān)系,最低檢出限分別為32.02 pmol/L(S/N=3)和43.96 pmol/L(S/N=3)。此外,在相同條件下,PFCs通過靜電作用與該QDs形成離子締合物,導致RLS強度顯著增加,在372.0 nm處,增強的IRLS分別在PFOA和PFOS濃度范圍為0~5.0 nmol/L(R12=0.9973)和0~5.0 nmol/L(R22=0.9992)處呈線性關(guān)系,且最低檢出限分別為47.78 pmol/L(S/N=3)和56.72pmol/L(S/N=3)。據(jù)此建立了快速檢測PFOA和PFOS的熒光和散射雙信號分析方法。以上方法靈敏度高、檢出限較低,并且具有較高的回收率,可應用于環(huán)境水樣中PFCs的測定,回收率在95.0%~104.0%之間,RSD≤5.42%。
[Abstract]:Perfluorinated chemicals (PFCs) has been widely used in industry since 1960s, such as being used as surfactants, polymer additives and flame retardants, and in commercial fields (such as various household items). Among them, perfluorooctanic acid (PFOA) and perfluorooctane sulfonic sulfonic acid (PFOS) are two typical PFCs, and a variety of PFCs in the environment. Metabolites. They are widely distributed globally, with environmental persistence, bioaccumulation, potential toxicity and long distance migration, and can be enriched in the environment and in organisms. In addition, PFOA and PFOS are more water-soluble than other PFCs, so it is easy to spread and spread in the water environment. The environmental pollution caused by PFOA and PFOS. in groundwater and even tap water has been widely concerned in recent years, and has been included in the persistent organic pollutants (POPs). Therefore, it is very important to develop a simple, rapid and highly sensitive method for detecting PFCs, which is also very important in environmental monitoring and evaluation. In this paper, based on resonance light scattering (RLS) technology and fluorescence analysis technology, a spectral analysis method for detecting PFCs is established, and the mechanism of the system is discussed and the method is applied to the analysis and determination of PFCs content in environmental water samples. The specific contents include as follows: (1) a RLS based on Crystal violet (CV) dyes for PFOA detection is reported. The method has the advantages of simple, high speed, low cost and so on. In the BR buffer solution of 3.23 pH, PFOA is formed by combining the interaction of electrostatic and hydrophobic interaction with the protonated CV to generate the ion association, which leads to the enhancement of the system scattering signal, and the three scattering signal peaks at the 277 nm, 320 nm and 507 nm respectively. IRLS increases with the increase of PFOA concentration, and has a linear relationship in the concentration range of 1.0~20.0 mu mol/L (R12=0.9985), 0.10~25.0, mol/L (R22=0.9998) and 1.0~20.0 mu mol/L (R32=0.9971). As the concentration of PFOA increases, the signal is more sensitive than the signal at 277 and 507. Therefore, the selection of 32 is in this experiment. 0 nm as a quantitative analysis wavelength and the minimum detection limit of 11 nmol/L., a RLS analysis method for PFOA is established. The UV / visible spectrum, scanning electron microscopy (Scanning electron microscope, SEM) are used to explore the experimental mechanism and optimize the experimental conditions. This method is simple, fast, and low cost, and is successfully used for self application. The determination of PFOA in water and the water samples of the Jialing River. The recovery rate is between 91.36~104.8% and RSD < 4.04%. (2). The change of resonance light scattering (Resonance light scattering, RLS) spectra after the interaction of Methyl green (MG) with PFOS is studied. It is found that in the Britton-Robinson (BR) buffer solution of pH 6.86, the PFOS and the protonated MG form the ionic association through the electrostatic force and the hydrophobic force, and the IRLS at the 272 nm, 330 nm and 504 nm wavelengths increases with the increase of PFOS concentration, and is separated in 0~3.0 mol/L. It is proportional to the concentration range of 0~15.0 / mol/L (R32=0.9910). Because the IRLS signal at 330 nm is more sensitive than the IRLS signal at 272 nm and 504 nm, the linear range is wider. Therefore, in this experiment, 330 nm is selected as the quantitative analysis wavelength, the detection limit is 50 nmol//L., and PFOS can be used with the MG by electrostatic action and hydrophobicity. The interactivity of the system increases the RLS intensity of the system, while PFOA and other perfluorochemicals do not interact with MG and have no effect on the RLS in this system. Accordingly, the selective detection of PFOS has been realized. This method has been successfully used for the determination of PFOS in water and the water samples of the Jialing River. The recovery rate is between 98.81~107.38% and RSD is less than 4.36%. (3). A simple and rapid fluorescence probe was designed to detect trace Perfluorocompounds (PFCs) in the environment by using a water-soluble thiamine (CA) coated cadmium telluride quantum dot (CdTe QDs). It was found that in the BR buffer solution of pH 3.23, the fluorescence intensity of CdTe QDs decreased with the increase of PFCs concentration, and in PFOA and PFOS concentration, respectively. The degree is linear in the range of 0~10.0 nmol/L (R12=0.9996) and 0~15.0 nmol/L (R22=0.9991). The lowest detection limits are 32.02 pmol/L (S/N=3) and 43.96 pmol/L (S/N=3), respectively. Under the same condition, PFCs by the electrostatic action and the formation of the ionic association of the QDs. The linear relationship between the concentration range of OA and PFOS is 0~5.0 nmol/L (R12=0.9973) and 0~5.0 nmol/L (R22=0.9992), and the lowest detection limits are 47.78 pmol/L (S/N=3) and 56.72pmol/L (S/N=3). The recovery rate can be applied to the determination of PFCs in environmental water samples. The recovery rate is between 95.0%~104.0% and RSD < 5.42%.
【學位授予單位】:西南大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O657.3;X832
【參考文獻】
相關(guān)期刊論文 前10條
1 叢妍斌;鄭永紅;鄭莉;吳飛;譚克俊;;基于金納米粒子比色法檢測全氟辛烷磺酸[J];光譜學與光譜分析;2015年01期
2 李佳渝;李華春;吳飛;譚克俊;;基于與桑色素相互作用共振光散射法測定鹽酸巴馬汀[J];光譜學與光譜分析;2014年06期
3 李玲;趙康峰;李毅民;白雪濤;;全氟辛烷磺酸和全氟辛酸神經(jīng)毒性機制研究進展[J];環(huán)境衛(wèi)生學雜志;2013年02期
4 李華春;覃明麗;譚克俊;;硅鎢酸與鹽酸巴馬汀相互作用光譜研究及其分析應用[J];化學學報;2012年06期
5 王瑩瑩;李華春;譚克俊;;硫代乙酰胺共振光散射法檢測環(huán)境水樣中痕量汞[J];應用化學;2012年02期
6 田富箱;徐斌;夏圣驥;高乃云;李大鵬;梁闖;;飲用水中全氟化合物(PFCs)的控制研究進展[J];中國給水排水;2010年12期
7 潘媛媛;史亞利;蔡亞岐;;高效液相色譜-串聯(lián)質(zhì)譜聯(lián)用測定人血液中的全氟化合物[J];分析化學;2008年10期
8 ;Multi-walled carbon nanotubes based catalyst plasmon resonance light scattering analysis of tetracycline hydrochloride[J];Science in China(Series B:Chemistry);2008年09期
9 黃曉蘭;吳惠勤;黃芳;林曉珊;朱志鑫;;液相色譜-質(zhì)譜法測定紡織品和皮革制品中痕量全氟辛烷磺酸鹽[J];分析化學;2007年11期
10 周啟星;胡獻剛;;PFOS/PFOA環(huán)境污染行為與毒性效應及機理研究進展[J];環(huán)境科學;2007年10期
,本文編號:1848296
本文鏈接:http://www.sikaile.net/kejilunwen/huaxue/1848296.html