并聯(lián)電池模塊的熱電特性實(shí)驗(yàn)研究
[Abstract]:Because of its high efficiency and low emission, the electric vehicle with lithium ion battery as the power source is expected to replace the internal combustion engine vehicle with fossil fuel as energy source. The popularity of electric vehicles will effectively solve major social problems such as global warming and air pollution. As the core component of electric vehicle, one of the key problems of lithium-ion battery is aging and its accompanying power and energy density reduction. It has been shown that temperature and charge state (SOC), charge and discharge rate are the main factors affecting the aging process of lithium ion batteries. In electric vehicles, lithium-ion batteries are used in groups. Because of the inconsistency between batteries and the different positions of each battery, different batteries bear different loads and thermal environment, which is bound to make the aging of different batteries inconsistent. In this paper, the effects of battery inconsistency and thermal effect on the uneven current distribution are studied. A parallel experimental module of two batteries is designed to explore the changes of current distribution under different operating conditions (charge-discharge rate, temperature, etc.). First of all, the importance of the influence of battery internal resistance on the current distribution of parallel batteries is investigated. Five different methods are proposed and compared. Secondly, different load, temperature and other working conditions will also have different effects on the battery pack, and the experimental results also explore the difference of current distribution of parallel battery pack under different thermal boundary conditions and internal resistance. In this study, the effects of these factors on the current distribution of parallel batteries were investigated by investigating the internal resistance of single cell, the difference of initial open circuit voltage and thermal boundary conditions. Firstly, the internal resistance of the single cell was studied and measured. Because the internal resistance plays an important role in the current distribution of parallel batteries, five different internal resistance measurement methods are applied and compared in this study. Secondly, the loading current and ambient temperature of the battery pack are changed, and the internal resistance of the single cell is investigated, and the effects of the time needed to achieve SOC equilibrium and the thermal boundary conditions on the battery pack are investigated. It is found that the current distribution of parallel battery pack is affected by three main factors: (1) the resistance difference of each branch in parallel circuit, including the internal resistance and contact resistance of single cell; (2) the difference of open circuit voltage (OCV) of single cell depends on its SOC and temperature and (3) the temperature difference of single cell itself due to the different position in the battery pack. In order to minimize the current distribution and SOC difference of parallel battery pack, we investigated the following factors: 1) connecting conductor resistance: replacing copper wire with silver wire of the same length, The difference between SOC and current distribution in the charge and discharge process of battery pack is reduced. 2) the difference of initial open-circuit voltage between single cell: after each charge-discharge cycle, the static time increases for 13 hours, and the difference between current and SOC distribution in the next charge-discharge cycle decreases; 3) by improving the consistency of the thermal environment of the battery pack, the huge difference of current distribution caused by the different encapsulation conditions of the battery pack can be eliminated. We expect that the conclusions here will also apply to modules with more batteries.
【學(xué)位授予單位】:清華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM912
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 祁娜;姚舜;;單體電池電壓采集系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J];魚雷技術(shù);2008年02期
2 楊固長;崔益秀;周建銀;;鋰離子單體電池篩選方法的研究[J];電池工業(yè);2009年03期
3 王宏偉;肖海清;王超;鄧爽;楊宗輝;;筆記本電腦用單體電池的安全問題[J];電池工業(yè);2011年01期
4 吳憩棠;;通用在中國啟動(dòng)單體電池樣品研制與測(cè)試 訪通用中國科學(xué)研究院院長杜江凌博士[J];汽車與配件;2012年41期
5 魏如海;陳丹;;淺析單體電池在線活化技術(shù)在大發(fā)水電站的應(yīng)用[J];科技創(chuàng)業(yè)家;2012年15期
6 任洪;鉛酸牽引蓄電池 第二部分:單體電池和端子的尺寸及單體電池的極性標(biāo)志[J];蓄電池;1986年02期
7 馮建君;郭際;王興賀;段保京;;鋰-二氧化錳單體電池篩選方法的研究[J];電源技術(shù);2014年07期
8 ;從動(dòng)力蓄電池單體電池到汽車電子設(shè)備 艾德克斯提供完善測(cè)試方案[J];汽車與配件;2013年23期
9 王曉梅;潛艇蓄電池——先進(jìn)的單體電池設(shè)計(jì)[J];船電技術(shù);1994年02期
10 于志豪;常龍;張瑞雪;肖林京;劉韜;;鋰電池動(dòng)力電源單體電池電壓檢測(cè)系統(tǒng)設(shè)計(jì)[J];電源技術(shù);2014年05期
相關(guān)會(huì)議論文 前1條
1 沈丹;魏學(xué)哲;孫澤昌;;燃料電池系統(tǒng)單體電池電壓監(jiān)測(cè)方案的設(shè)計(jì)[A];2007年APC聯(lián)合學(xué)術(shù)年會(huì)論文集[C];2007年
相關(guān)重要報(bào)紙文章 前3條
1 記者 顏新華;國網(wǎng)成功研制大容量鈉硫儲(chǔ)能單體電池[N];中國電力報(bào);2009年
2 本報(bào)見習(xí)記者 呂彩霞;北京相關(guān)人士解析 電動(dòng)公交車電池衰減現(xiàn)象[N];中國汽車報(bào);2005年
3 何侖 《國際商報(bào)·汽車周刊》主編;“換電模式”與讓炸彈飛[N];國際商報(bào);2011年
相關(guān)碩士學(xué)位論文 前10條
1 周耀華;電動(dòng)汽車電池冷卻系統(tǒng)的數(shù)值模擬研究[D];華南理工大學(xué);2015年
2 郭巧嫣;車用動(dòng)力電池多內(nèi)熱源生熱模型和電熱不一致性研究[D];華南理工大學(xué);2015年
3 趙英杰;單體電池化成設(shè)備的研究[D];北京交通大學(xué);2011年
4 祁華銘;純電動(dòng)汽車能量均衡技術(shù)研究[D];合肥工業(yè)大學(xué);2015年
5 梅林;并聯(lián)電池模塊的熱電特性實(shí)驗(yàn)研究[D];清華大學(xué);2014年
6 林思岐;電池均衡電路的研究及應(yīng)用[D];北京交通大學(xué);2013年
7 牛萌;混合動(dòng)力車用電池均衡方案研究[D];北京交通大學(xué);2010年
8 夏小東;帶有升降壓變換器的飛渡電容式電池組均衡技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2011年
9 雷晶晶;動(dòng)力鋰離子電池組管理系統(tǒng)的研究[D];湖南大學(xué);2011年
10 白棟材;電池化成分容系統(tǒng)上位機(jī)軟件開發(fā)的設(shè)計(jì)與實(shí)現(xiàn)[D];武漢理工大學(xué);2012年
,本文編號(hào):2486008
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/2486008.html