天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 電力論文 >

基于強化學習的蓄電池儲能系統(tǒng)的優(yōu)化控制

發(fā)布時間:2019-01-01 19:44
【摘要】:以風能、太陽能等為代表性的分布式發(fā)電單元受到氣候和天氣影響,發(fā)電功率難以保證平穩(wěn),可能會引起頻率和電壓不穩(wěn),進而引起停電事故。為了解決這一問題,在具有分布式電源的系統(tǒng)中引入了儲能裝置。但是受環(huán)境影響,系統(tǒng)供電與用電負荷會出現不平衡的情況,從而導致蓄電池處于虧電狀態(tài)或過充電狀態(tài),長期運行會降低蓄電池組的使用壽命,增加系統(tǒng)維護成本,因此選擇合適的蓄電池控制策略具有重要的實際意義。本文研究了一個由分布式發(fā)電源、儲能設備、用電負荷以及系統(tǒng)的能量管理中心組成的蓄電池儲能系統(tǒng)。該儲能系統(tǒng)可以與電網進行交互。發(fā)電量不足時可以從電網買電,除了供給負荷需求,系統(tǒng)中多余的電量可以賣給電網或向電網提供頻率調節(jié)服務。系統(tǒng)中分布式發(fā)電功率、負荷需求功率、電價和調頻的價格相互獨立,具有很大的不確定性,本文將它們分別建模為Markov鏈來研究。蓄電池儲能裝置從當前狀態(tài)轉移到空和滿兩個特殊狀態(tài)的逗留時間不服從指數分布,所以將該儲能系統(tǒng)的優(yōu)化控制問題建模為半Markov決策過程。本文采用基于模型的Sarsa算法來學習最優(yōu)策略,從而使系統(tǒng)在滿足負荷需求的基礎上獲得的長期收益最大。隨著電動汽車產業(yè)的發(fā)展,電動汽車入網(vehicle-to-grid, V2G)正在成為研究熱點。本文考慮將分布式發(fā)電裝置引入V2G系統(tǒng)中。當發(fā)電量不足時,電動車可以從電網買電;當發(fā)電能力比較強時,除了供給電動車的用電需求,多余的發(fā)電量直接賣給電網。閑置在充電樁上的電動車可以與電網交互,根據自身電量的情況以及電價和調頻價格的高低,決定向電網賣電或是提供頻率調節(jié)服務。假設系統(tǒng)能夠在決策周期的初始時刻獲得系統(tǒng)的發(fā)電量和電價信息。將系統(tǒng)的優(yōu)化控制問題建模為動態(tài)規(guī)劃過程。用策略迭代的方法來獲取最優(yōu)策略,從而使該系統(tǒng)能夠在滿足自身需求的同時獲取最大收益。
[Abstract]:The distributed generation units, such as wind energy and solar energy, are affected by climate and weather, so it is difficult to ensure stable power generation, which may cause frequency and voltage instability, and then cause power outages. In order to solve this problem, energy storage device is introduced into the system with distributed power supply. However, under the influence of the environment, there will be imbalance between the power supply and the power load of the system, which will lead to the battery in the state of power deficit or overcharge, and the long-term operation will reduce the service life of the battery group and increase the maintenance cost of the system. Therefore, the selection of appropriate battery control strategy has important practical significance. In this paper, a battery energy storage system composed of distributed power generation, energy storage equipment, power load and energy management center of the system is studied. The energy storage system can interact with the power grid. Electricity can be bought from the power grid when the power generation is insufficient. In addition to supplying the load demand, the excess power in the system can be sold to the power grid or to provide frequency regulation services to the power network. The distributed generation power, load demand power, electricity price and frequency modulation price are independent of each other. In this paper, they are modeled as Markov chains. The time of stay of storage battery energy storage device from current state to empty state and full state is not satisfied with exponential distribution, so the optimal control problem of the energy storage system is modeled as a semi-Markov decision-making process. In this paper, the model-based Sarsa algorithm is used to learn the optimal strategy, so that the long-term benefits of the system can be maximized on the basis of satisfying the load requirements. With the development of electric vehicle industry, vehicle-to-grid, V 2 G is becoming a research hotspot. In this paper, we consider introducing distributed generation equipment into V2G system. Electric vehicles can buy electricity from the power grid when the generation capacity is low; when the generation capacity is relatively strong, in addition to the electricity demand for electric vehicles, the excess power generation is sold directly to the power grid. Electric vehicles idle on charging piles can interact with the power grid and decide to sell power to the grid or provide frequency regulation services according to their own electricity quantity and the price of electricity price and frequency modulation. It is assumed that the system can obtain the power generation and price information of the system at the beginning of the decision cycle. The optimal control problem of the system is modeled as a dynamic programming process. The method of policy iteration is used to obtain the optimal policy, so that the system can obtain the maximum profit while satisfying its own requirements.
【學位授予單位】:合肥工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM912

【相似文獻】

相關期刊論文 前10條

1 ;美國阿拉斯加電網安裝可提供峰值達26.7MW電力的在線蓄電池儲能系統(tǒng)[J];國際電力;2004年02期

2 尚景宏;蔡旭;張亮;張楠;萬文濤;;大型風力發(fā)電蓄電池儲能電源系統(tǒng)應用[J];應用科技;2009年10期

3 程苗苗;康龍云;徐大明;孫耀杰;;風光復合發(fā)電系統(tǒng)中儲能單元的容量優(yōu)化設計[J];電氣應用;2006年06期

4 李衛(wèi);孟慶平;王光;李衛(wèi)國;付浩;;基于蓄電池儲能的配電網擴容經濟性研究[J];能源與節(jié)能;2014年02期

5 張干周;光伏發(fā)電和蓄電池儲能混合發(fā)電系統(tǒng)的經濟性分析[J];國際電力;2004年04期

6 顏志敏;王承民;連鴻波;衣濤;時志雄;張宇;;計及缺電成本的用戶側蓄電池儲能系統(tǒng)容量規(guī)劃[J];電力系統(tǒng)自動化;2012年11期

7 張鐘文;曹敦;彭長巍;錢芳;;風光儲輸系統(tǒng)最優(yōu)容量配比研究[J];四川電力技術;2013年01期

8 孔飛飛;晁勤;袁鐵江;;基于電網調度的風電場蓄電池儲能技術[J];電源技術;2012年06期

9 劉建戈;周建華;;用電側蓄電池儲能裝置的研究[J];電氣應用;2008年13期

10 吳迪;鄧姣艷;田密;石存瑋;張毅;;光伏組網單元直流側蓄電池儲能系統(tǒng)研究[J];變頻器世界;2014年01期

相關博士學位論文 前1條

1 薛暢;新型廣義有源電力濾波器的研究[D];哈爾濱工業(yè)大學;2014年

相關碩士學位論文 前10條

1 張冬誼;基于狀態(tài)空間模型的智能電網蓄電池儲能系統(tǒng)仿真研究[D];重慶大學;2015年

2 顏志敏;智能電網中蓄電池儲能的價值評估研究[D];上海交通大學;2012年

3 孔飛飛;基于電網調度的風電場蓄電池儲能系統(tǒng)建模與控制[D];新疆大學;2012年

4 肖碩霜;帶蓄電池儲能的風電機組并網控制研究[D];華北電力大學;2013年

5 侯昀;上海新能源應用中的可行蓄電池儲能方案研究[D];上海交通大學;2011年

6 徐小三;含蓄電池儲能的永磁直驅風力發(fā)電系統(tǒng)并網研究[D];上海交通大學;2015年

7 田密;含蓄電池儲能的分布式光伏發(fā)電控制策略研究[D];西南交通大學;2014年

8 張商州;蓄電池儲能效率的測試與分析[D];陜西科技大學;2014年

9 劉靜;基于強化學習的蓄電池儲能系統(tǒng)的優(yōu)化控制[D];合肥工業(yè)大學;2014年

10 楊威;用于蓄電池儲能的雙向AC/DC變換器研究[D];遼寧工程技術大學;2013年



本文編號:2398031

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/2398031.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶b1708***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com