應(yīng)用Levenberg-Marquardt方法提高電力系統(tǒng)大規(guī)模潮流計(jì)算收斂性研究
本文選題:大規(guī)模潮流計(jì)算 + 最優(yōu)乘子法; 參考:《上海交通大學(xué)》2014年碩士論文
【摘要】:電力系統(tǒng)是人類(lèi)所建立的最復(fù)雜的工業(yè)系統(tǒng)之一,是一個(gè)實(shí)現(xiàn)能量轉(zhuǎn)換、傳輸、分配復(fù)雜、大型、強(qiáng)非線性、高維數(shù)、分層分布的動(dòng)態(tài)大系統(tǒng)。同時(shí),電力系統(tǒng)也是現(xiàn)代社會(huì)中極為重要的工程系統(tǒng),提供人類(lèi)生產(chǎn)生活中所需要的絕大部分能量,,同時(shí)也消耗大量煤、石油等不可再生的一次能源。隨著電力工業(yè)的迅猛發(fā)展,其大系統(tǒng)、大電網(wǎng)、超高壓、重負(fù)荷、大區(qū)域聯(lián)網(wǎng)、交直流聯(lián)合輸電和高度自動(dòng)控制等特點(diǎn)日益鮮明。電力系統(tǒng)分析是進(jìn)行電力系統(tǒng)研究、規(guī)劃設(shè)計(jì)、運(yùn)行調(diào)度與控制的重要基礎(chǔ)和手段,隨著研究工作的深入和計(jì)算機(jī)的普及,已形成了潮流計(jì)算、短路計(jì)算和穩(wěn)定分析計(jì)算這三大計(jì)算模塊。其中潮流計(jì)算是電力系統(tǒng)運(yùn)行控制中最基本的工具,其結(jié)果可以幫助運(yùn)行調(diào)度人員了解電網(wǎng)的實(shí)際運(yùn)行狀況,也可以為后續(xù)分析計(jì)算如穩(wěn)定分析做準(zhǔn)備。隨著實(shí)際電力系統(tǒng)規(guī)模的日益擴(kuò)大,運(yùn)行工況多樣化,當(dāng)調(diào)度員在做日;蜷L(zhǎng)期規(guī)劃時(shí),經(jīng)常在得到滿(mǎn)足實(shí)際要求的潮流分布前,碰到大量常規(guī)的牛頓法難以收斂的工況。此時(shí)調(diào)度員或方式規(guī)劃人員難以獲得有效信息對(duì)潮流進(jìn)行調(diào)整,憑借人工經(jīng)驗(yàn)進(jìn)行調(diào)整,效率較低工作量大而且難以獲得貼近現(xiàn)實(shí)的實(shí)際工況。所以研究在多種工況下提高潮流計(jì)算收斂性的算法具有重要的理論價(jià)值和實(shí)際意義。 本文首先介紹了提高大規(guī)模潮流計(jì)算收斂性算法的歷史發(fā)展,在理論上介紹了至今提高潮流收斂性應(yīng)用最廣泛的最優(yōu)乘子法及新興張量法,總結(jié)了兩種算法的優(yōu)點(diǎn)及有待發(fā)展的參考方向。其次,本文還詳細(xì)介紹了提高潮流計(jì)算收斂性的優(yōu)化算法及其特點(diǎn)。然后基于潮流方程的最小二乘模型,介紹了Levenberg-Marquardt(LM)方法的歷史及發(fā)展,并結(jié)合最新自適應(yīng)LM方法的數(shù)學(xué)成果,將其引入潮流計(jì)算。研究并總結(jié)了自適應(yīng)LM方法具有一定能力繞開(kāi)迭代過(guò)程中雅克比矩陣近似奇異區(qū),從而提高潮流計(jì)算收斂性的機(jī)理,發(fā)現(xiàn)自適應(yīng)LM方法也是一種永不發(fā)散的潮流計(jì)算方法,且依據(jù)相關(guān)數(shù)學(xué)定理,該方法具有以局部二階收斂階數(shù)收斂到非線性方程組最小二乘解的能力。在深入研究自適應(yīng)LM方法提高潮流收斂性原理的基礎(chǔ)上,提出了將自適應(yīng)LM方法應(yīng)用于大規(guī)模潮流計(jì)算的迭代步稀疏實(shí)現(xiàn)方法,簡(jiǎn)化了程序同原有常規(guī)牛頓法的接口,增強(qiáng)了算法的工程實(shí)用性。通過(guò)國(guó)內(nèi)大規(guī)模實(shí)際電網(wǎng)算例驗(yàn)證,采用稀疏技術(shù)實(shí)現(xiàn)的自適應(yīng)LM方法的大規(guī)模電力系統(tǒng)潮流計(jì)算具有很好的工程應(yīng)用前景。最后,將自適應(yīng)LM方法同傳統(tǒng)提高潮流收斂性的最優(yōu)乘子法及新興張量法在計(jì)算量、不同工況下的收斂性等方面做比較,說(shuō)明了LM方法是一種通用的提高大規(guī)模潮流計(jì)算收斂性的算法。在本文最后,將自適應(yīng)LM方法應(yīng)用至中小規(guī)模的交直流混聯(lián)系統(tǒng),說(shuō)明自適應(yīng)LM方法具有提高大規(guī)模交直流互聯(lián)系統(tǒng)潮流計(jì)算收斂性的潛力。
[Abstract]:Power system is one of the most complex industrial systems established by human beings. It is a large dynamic system which realizes energy conversion, transmission, distribution, large scale, strong nonlinearity, high dimension and hierarchical distribution. At the same time, the power system is also an extremely important engineering system in modern society. It provides most of the energy needed by human beings in production and life, and also consumes a large number of non-renewable primary energy sources such as coal, oil and so on. With the rapid development of power industry, the characteristics of large power system, large power grid, ultra-high voltage, heavy load, large area interconnection, AC / DC combined transmission and height automatic control are becoming more and more distinct. Power system analysis is an important basis and means for power system research, planning and design, operation dispatching and control. With the deepening of research work and the popularization of computers, power flow calculation has been formed. Short circuit calculation and stability analysis calculation are the three major calculation modules. Power flow calculation is the most basic tool in the operation control of power system. The results can help the dispatcher to understand the actual operation state of the power network and prepare for the subsequent analysis calculation such as stability analysis. With the expansion of actual power system scale and diversification of operation conditions, when dispatchers make daily or long-term planning, they often encounter a large number of conventional Newtonian methods that are difficult to converge before they get the power flow distribution to meet the actual requirements. It is difficult for dispatcher or mode planner to get effective information to adjust the current and adjust it with artificial experience. The efficiency is low and the actual working condition close to reality is difficult to obtain. Therefore, it is of great theoretical and practical significance to study the algorithm to improve the convergence of power flow calculation under various working conditions. In this paper, the historical development of convergence algorithms for large-scale power flow computation is introduced. The optimal multiplier method and the emerging Zhang Liang method, which are widely used to improve the convergence of power flow, are introduced in theory. The advantages of the two algorithms and the reference directions to be developed are summarized. Secondly, the optimization algorithm to improve the convergence of power flow calculation and its characteristics are introduced in detail. Then the history and development of Levenberg-Marquardt (LM) method are introduced based on the least square model of power flow equation. Combined with the mathematical results of the latest adaptive LM method, the Levenberg-Marquardt (LM) method is introduced into power flow calculation. This paper studies and summarizes the mechanism of adaptive LM method which can bypass the approximate singular region of Jacobian matrix in the iterative process and improve the convergence of power flow calculation. It is also found that the adaptive LM method is a non-divergent power flow calculation method. According to the relevant mathematical theorems, the method has the ability to converge to the least square solution of nonlinear equations by order of local second order convergence. On the basis of deeply studying the principle of adaptive LM method to improve the convergence of power flow, an iterative sparse implementation method of adaptive LM method for large-scale power flow calculation is proposed, which simplifies the interface between the program and the original conventional Newton method. The engineering practicability of the algorithm is enhanced. Based on the examples of large scale power system in China, it is proved that the adaptive LM method with sparse technique has a good prospect of engineering application. Finally, the adaptive LM method is compared with the traditional optimal multiplier method to improve the convergence of power flow and the emerging Zhang Liang method in terms of computational complexity and convergence under different working conditions. It is shown that LM method is a universal algorithm to improve the convergence of large-scale power flow computation. Finally, the adaptive LM method is applied to small and medium scale AC / DC hybrid systems. It is shown that the adaptive LM method has the potential to improve the convergence of power flow calculation for large-scale AC / DC interconnected systems.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TM744
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉崇茹,張伯明,孫宏斌,陳壽孫;多種控制方式下交直流系統(tǒng)潮流算法改進(jìn)[J];電力系統(tǒng)自動(dòng)化;2005年21期
2 劉崇茹;張伯明;;交直流混合輸電系統(tǒng)靈敏度分析[J];電力系統(tǒng)自動(dòng)化;2007年12期
3 胡澤春;嚴(yán)正;;帶最優(yōu)乘子牛頓法在交直流系統(tǒng)潮流計(jì)算中的應(yīng)用[J];電力系統(tǒng)自動(dòng)化;2009年09期
4 陳禮義,戴宏偉,張琦鵬;一種大范圍收斂的電力系統(tǒng)潮流算法——同倫延拓法[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);1993年01期
5 姚玉斌,魯寶春,陳學(xué)允;小阻抗支路對(duì)牛頓法潮流的影響及其處理方法[J];電網(wǎng)技術(shù);1999年09期
6 蘇新民,毛承雄,陸繼明;對(duì)角塊加邊模型的并行潮流計(jì)算[J];電網(wǎng)技術(shù);2002年01期
7 孫宏斌,張伯明,相年德,曹冬明;發(fā)輸配全局潮流計(jì)算第二部分:收斂性、實(shí)用算法和算例[J];電網(wǎng)技術(shù);1999年01期
8 薛振宇;房大中;;基于雙向迭代的交直流互聯(lián)電力系統(tǒng)潮流計(jì)算[J];電力系統(tǒng)自動(dòng)化;2013年05期
9 鞠平,張翠,衛(wèi)志農(nóng),董峰;電力系統(tǒng)潮流計(jì)算的模擬進(jìn)化方法[J];河海大學(xué)學(xué)報(bào);1998年05期
10 姚玉斌,蔡興國(guó),陳學(xué)允,蓋志武;PQ分解法潮流求解含有小阻抗支路系統(tǒng)的收斂性分析[J];繼電器;2000年04期
相關(guān)博士學(xué)位論文 前1條
1 洪峰;大型互聯(lián)電網(wǎng)潮流自動(dòng)調(diào)整方法研究[D];華中科技大學(xué);2011年
本文編號(hào):2088711
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/2088711.html