大規(guī)模電力系統(tǒng)機組組合問題的近似動態(tài)規(guī)劃模型與算法
本文選題:安全約束 + 截斷技術(shù)。 參考:《廣西大學》2014年博士論文
【摘要】:隨著智能電力調(diào)度系統(tǒng)的建設(shè)與發(fā)展,電網(wǎng)運行部門對機組組合計算精度和計算速度的要求越來越高。同時,由于電網(wǎng)互聯(lián)規(guī)模不斷擴大,使機組組合問題的求解愈加復雜和困難。因此,研究探索適合于求解大規(guī)模電力系統(tǒng)機組組合問題的理論和方法,對提高發(fā)電能源利用率、節(jié)能降耗具有重要的現(xiàn)實意義和經(jīng)濟價值。本文涉及大規(guī)模電力系統(tǒng)機組組合問題的近似動態(tài)規(guī)劃模型與算法。針對動態(tài)規(guī)劃求解大規(guī)模電力系統(tǒng)機組組合的“維數(shù)災(zāi)”問題,首次將數(shù)學規(guī)劃中的最新成果——近似動態(tài)規(guī)劃理論應(yīng)用于電力系統(tǒng)的機組組合問題。分別對近似動態(tài)規(guī)劃在日前常規(guī)機組組合問題和安全約束機組組合問題中的應(yīng)用,開展了較為深入細致的研究工作,嘗試提出一種可快速求解大規(guī)模機組組合問題,且易于考慮各種電力系統(tǒng)安全運行條件的近似動態(tài)規(guī)劃方法。首先探討近似動態(tài)規(guī)劃解決“維數(shù)災(zāi)”問題的數(shù)學原理,分析了四種近似值函數(shù)模型及現(xiàn)有的函數(shù)近似方法,較詳細介紹了近似值迭代與近似策略迭代兩種近似迭代算法的原理。在結(jié)合機組組合問題對近似動態(tài)規(guī)劃7個基本概念進行定義的基礎(chǔ)上,通過引入觀測成本函數(shù),給出了決策函數(shù)、立即成本和近似值函數(shù)的具體公式,構(gòu)建了采用決策后狀態(tài)變量的機組組合近似值函數(shù)。采用所提機組組合近似值函數(shù),在IBM兼容PC機上用Matlab-2013a編程,對10~100機24時段6個系統(tǒng)的實例進行了計算,首次比較了近似值迭代和近似策略迭代兩種近似迭代算法求解機組組合問題的效果,指出了近似策略迭代算法對機組組合問題的適用性。針對直接套用近似策略迭代算法求解機組組合問題運算時間偏大的問題,根據(jù)電力系統(tǒng)實際運行特征,提出了可快速求解大規(guī)模系統(tǒng)機組組合問題的策略迭代近似動態(tài)規(guī)劃法。首先結(jié)合機組組合問題對近似策略迭代算法進行改進,提出了適合于機組組合問題的近似策略迭代算法,更新所提機組組合近似值函數(shù)。本文給出了該算法的具體流程和實現(xiàn)細節(jié),對相鄰時段近似值函數(shù)的更新、機組出力爬升約束的處理和壓縮狀態(tài)空間的傳統(tǒng)序列截斷技術(shù)未考慮機組最小啟停時間特性等問題進行了重點研究,提出了每次用一個預(yù)決策狀態(tài)更新決策后狀態(tài)近似值函數(shù)、采用動態(tài)的機組出力兩界約束出力爬升約束以及擴展的序列截斷技術(shù)等具體解決方案。通過10~1000機96時段大規(guī)模系統(tǒng)的計算,驗證了所提方法的正確性和實用性。結(jié)合上述對近似動態(tài)規(guī)劃理論的研究結(jié)果及其在日前常規(guī)機組組合問題上的具體應(yīng)用,將所提策略迭代近似動態(tài)規(guī)劃法擴展到了安全約束機組組合問題。針對潮流方程、線路潮流約束和節(jié)點電壓限制等約束條件使問題的求解難度和計算量顯著增加的問題,在不改變近似策略迭代算法的前提下,提出了通過調(diào)整立即成本的計算處理潮流約束的方法。通過IEEE-30~300節(jié)點系統(tǒng)和波蘭2737節(jié)點系統(tǒng)的實例,驗證了所提方法求解安全約束機組組合問題的正確性和實用性。本文研究成果是國家973項目(2013CB228205)第5課題“特性各異電源及負荷的能量互補協(xié)同優(yōu)化調(diào)控”成果之一,在該項目與國家自然科學基金項目(51167001)共同資助下完成。研究成果為制定大規(guī)模電力系統(tǒng)節(jié)能發(fā)電調(diào)度計劃,提供了一種可靠方案與技術(shù)支撐;不僅在電力系統(tǒng)的智能優(yōu)化調(diào)度方向具有重要應(yīng)用價值,還為近似動態(tài)規(guī)劃理論的發(fā)展開拓了新領(lǐng)域。
[Abstract]:With the construction and development of the intelligent power dispatching system, the requirements for the calculation precision and speed of the unit combination are getting higher and higher. At the same time, the solving of the unit combination problem is more complex and difficult because of the continuous expansion of the interconnection scale of the power grid. Therefore, the research and exploration is suitable for solving the unit assembly of large scale power system. The theory and method of the problem have important practical significance and economic value for improving the utilization of power generation energy and saving energy and reducing consumption. This paper deals with the approximate dynamic programming model and algorithm of the unit combination problem of large-scale power system. The latest achievement of the approximate dynamic programming theory is applied to the unit combination problem of power system. The application of approximate dynamic programming to the problem of daily conventional unit combination and the combination of safety constraint unit is carried out in a more thorough and meticulous study, and an attempt is made to quickly solve the problem of large scale unit combination. The approximate dynamic programming method for the safe operating conditions of various power systems is easily considered. First, the mathematical principle of the approximate dynamic programming to solve the "dimension disaster" problem is discussed. Four approximate value function models and the existing approximation methods are analyzed. Two approximate iterative calculations are introduced in detail. On the basis of defining the 7 basic concepts of approximate dynamic programming in combination with the unit combination problem, by introducing the observation cost function, the specific formula of the decision function, the immediate cost and the approximate value function are given, and the approximate value function of the unit combination with the state variable after the decision is constructed. The value function is programmed by Matlab-2013a on the IBM compatible PC machine, and the examples of 6 systems in the 10~100 machine and 24 period are calculated. The results of the approximate iterative and approximate iterative iterative algorithm for solving the unit combination problem are compared for the first time, and the applicability of the approximate strategy iteration algorithm to the unit combination problem is pointed out. The approximate strategy iterative algorithm is applied to solve the problem of large operation time of the unit combination problem. According to the actual operation characteristics of the power system, a strategy iterative approximate dynamic programming method is proposed to quickly solve the unit assembly problem of large scale system. The approximate strategy iteration algorithm of the unit combination problem is used to update the approximate value function of the proposed unit combination. This paper gives the detailed process and implementation details of the algorithm, updates the approximate value function of the adjacent period, the processing of the unit output climbing constraint and the traditional sequence truncation of the compressed state space without considering the minimum start and stop time of the unit. The characteristics and other problems are emphatically studied, and some specific solutions are proposed, such as updating the state approximation function after decision making with a pre decision state, using the dynamic force two bound constraints and the extended sequence truncation technology. The proposed method is verified through the calculation of the large-scale system in the 10~1000 machine and 96 period. In combination with the results of the above approximate dynamic programming theory and its application on the problem of the daily conventional unit combination, the proposed iterative approximate dynamic programming method is extended to the problem of the safety constraint unit combination. The constraints of the power flow equation, the line flow constraint and the node voltage limit are made. The problem is difficult to solve and the amount of calculation is increased significantly. On the premise of not changing the approximate strategy iterative algorithm, a method to deal with the current constraints is proposed by adjusting the calculation of the immediate cost. Through the example of the IEEE-30 300 node system and the Poland 2737 node system, the proposed method is proved to solve the problem of the safety constraint unit combination problem. The results of this study are one of the results of the national 973 Project (2013CB228205) fifth project, "energy complementation and coordinated optimization control of different power and load of different characteristics", completed jointly by the project and the National Natural Science Foundation (51167001). The research results are for the formulation of large-scale power system energy saving power generation. The degree plan provides a reliable scheme and technical support, which not only has an important application value in the direction of intelligent optimal dispatching of power systems, but also opens up a new field for the development of approximate dynamic programming theory.
【學位授予單位】:廣西大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TM73
【參考文獻】
相關(guān)期刊論文 前10條
1 韓學山,柳焯;考慮機組爬坡速度和網(wǎng)絡(luò)安全約束的經(jīng)濟調(diào)度解耦算法[J];電力系統(tǒng)自動化;2002年13期
2 趙慶波,孫嵐,郭燕,高峰;基于拉格朗日松弛法的優(yōu)化調(diào)度系統(tǒng)[J];電力系統(tǒng)自動化;2004年18期
3 陳海焱;陳金富;段獻忠;;含風電場電力系統(tǒng)經(jīng)濟調(diào)度的模糊建模及優(yōu)化算法[J];電力系統(tǒng)自動化;2006年02期
4 陸凌蓉;文福拴;薛禹勝;辛建波;;計及可入網(wǎng)電動汽車的電力系統(tǒng)機組最優(yōu)組合[J];電力系統(tǒng)自動化;2011年21期
5 陳皓勇,王錫凡;機組組合問題的優(yōu)化方法綜述[J];電力系統(tǒng)自動化;1999年05期
6 謝國輝;張粒子;舒雋;蘇濟歸;;基于分層分枝定界算法的機組組合[J];電力自動化設(shè)備;2009年12期
7 王承民,郭志忠,于爾鏗;確定機組組合的一種改進的動態(tài)規(guī)劃方法[J];電網(wǎng)技術(shù);2001年05期
8 李洪才;郭瑞鵬;陳海良;;改進整數(shù)變量辨識方法在機組組合問題中的應(yīng)用[J];電網(wǎng)技術(shù);2012年07期
9 王雁凌;許傳龍;岳巍澎;;時變可靠性約束下含風電系統(tǒng)旋轉(zhuǎn)備用的隨機規(guī)劃模型[J];電網(wǎng)技術(shù);2013年05期
10 胡國偉;別朝紅;王錫凡;;考慮運行可靠性的含風電電力系統(tǒng)優(yōu)化調(diào)度[J];電工技術(shù)學報;2013年05期
,本文編號:2087786
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/2087786.html