超高分辨率的復(fù)雜頻率測量系統(tǒng)設(shè)計
發(fā)布時間:2018-06-05 10:51
本文選題:頻率測量 + 相位重合檢測; 參考:《西安電子科技大學》2014年碩士論文
【摘要】:現(xiàn)代電子技術(shù)領(lǐng)域中,量子頻標、通訊技術(shù)、高技術(shù)的頻率控制裝置、基礎(chǔ)科學研究和科學儀器中存在著大量頻率復(fù)雜的信號,對它們的精密測量和控制具有顯著的科學意義,于是時間頻率的測量和相關(guān)技術(shù)就變得極其重要。傳統(tǒng)的技術(shù)一般是通過頻率變換使參考信號的頻率等同于被測信號的頻率,或者采用了相關(guān)的如模擬內(nèi)插、游標、時間-數(shù)字轉(zhuǎn)換等高精度的時間間隔測量方法輔助測量,實現(xiàn)起來線路復(fù)雜,而且最終的測量精度仍然是有限的。如目前可能得到的最高精度均是在10-11/s量級。因此,針對復(fù)雜頻率信號的行之有效的特高分辨率測量可以在多個領(lǐng)域的精度提高、功能擴展方面起到顯著的作用。針對目前普遍使用的測頻方法中存在的誤差問題,本文基于相位重合點檢測技術(shù)和邊沿效應(yīng)分析,提出一種全新的頻率測量方法,不僅用于對信號頻率的測量,還可擴展到頻率信號的其他參數(shù)測量應(yīng)用中。相位重合點檢測技術(shù)是一項新的發(fā)現(xiàn),本文對此理論及相關(guān)測量電路進行了詳細的闡述,在群相位同步概念的基礎(chǔ)之上,針對重合點模糊區(qū)不同,相位重合檢測線路在延遲時間上的差異,使兩個線路的模糊區(qū)邊沿處相同位置的檢出信息反相,根據(jù)離散模糊區(qū)的特點,對兩個線路檢測的結(jié)果進行“異或”處理便得到準確的模糊區(qū)邊沿。以此為基礎(chǔ)形成的測量閘門保證了信號間的相位群同步,從最大程度上抵消掉量化誤差帶來的影響,使測量精度取決于儀器裝置測量分辨率的穩(wěn)定度指標而非分辨率指標本身。這種測量始終保留信號的原始信息,可以對信號做相關(guān)相位處理,甚至進行頻率信號其他物理量值的測試,得到的測頻精度從10-12/s延續(xù)到10-17/數(shù)天。本文通過邊沿效應(yīng)實現(xiàn)檢測信號間頻率關(guān)系復(fù)雜時的測量,這種方法不需要經(jīng)過復(fù)雜的頻率變換,也沒有專門的輔助精密時間測量途徑,同時,它又是在相位處理基礎(chǔ)上實現(xiàn)的可以得到很高的測量分辨率。文中對系統(tǒng)設(shè)計整體工作原理給出了詳細的介紹,包括硬件部分的具體實現(xiàn)方法。系統(tǒng)中前期信號處理及放大整形采用ECL(Emitter Couple Logic)電路,重合檢測采用CPLD(Complex Programmable Logic Device)設(shè)計完成,而后期需要進行的數(shù)據(jù)采集、處理、計數(shù)和顯示則使用虛擬儀器Lab VIEW軟件實現(xiàn)。實驗證明,利用邊沿效應(yīng)進行重合檢測所產(chǎn)生的閘門,使得測量精度僅僅取決于電路的穩(wěn)定性指標而非分辨率指標,測量精度大幅度提高,達到2到3個數(shù)量級的提升。該方法具有較新的原理,測量精度高,設(shè)備簡單,易于實現(xiàn),且該測量系統(tǒng)具有體積小,可靠性高等優(yōu)點。
[Abstract]:In the field of modern electronic technology, quantum frequency standard, communication technology, high technology frequency control device, basic scientific research and scientific instruments have a large number of complex frequency signals, which have significant scientific significance for their precision measurement and control. Therefore, the measurement of time frequency and related technology become extremely important. The traditional technique is to make the frequency of reference signal equal to the frequency of the measured signal by frequency conversion, or to use high precision time interval measurement methods such as analog interpolation, cursors, time-digital conversion and so on. The circuit is complex and the final measurement accuracy is still limited. For example, the highest accuracy currently available is in the order of 10-11 / s. Therefore, the effective ultra-high resolution measurement for complex frequency signals can improve the accuracy in many fields and play a significant role in function expansion. Aiming at the error problem in the frequency measurement method which is widely used at present, based on the phase coincidence point detection technique and the edge effect analysis, a new frequency measurement method is proposed in this paper, which is not only used to measure the signal frequency, but also to measure the frequency of the signal. It can also be extended to other parameter measurement applications of frequency signals. Phase coincidence detection is a new discovery. In this paper, the theory and related measuring circuits are described in detail. Based on the concept of group phase synchronization, the fuzzy region of coincidence point is different. The difference in delay time of phase coincidence detection line makes the detection information of the same position at the edge of the fuzzy zone of two lines to be detected inversely, according to the characteristics of the discrete fuzzy region, The "XOR" processing of the results of two line detection can get the exact edge of the fuzzy region. Based on this, the phase group synchronization between signals is ensured, and the influence of quantization error is eliminated to the maximum extent. The accuracy of measurement depends on the stability index of the measuring resolution of the instrument rather than the resolution index itself. This kind of measurement always retains the original information of the signal and can be processed by phase correlation, and even the other physical values of the frequency signal can be tested. The accuracy of the frequency measurement can be extended from 10-12 / s to 10-17 / days. In this paper, the edge effect is used to realize the measurement of complex frequency relationship between signals. This method does not need to go through complex frequency transformation, nor does it have a special auxiliary precise time measurement method, at the same time, It is realized on the basis of phase processing to obtain high resolution. The whole working principle of the system design is introduced in detail, including the realization method of the hardware part. In the early stage of the system, ECL(Emitter Couple logic circuit is used to process and amplify the signal, and CPLD(Complex Programmable Logic Device) is used to design the reclosing detection. The data acquisition, processing, counting and display are realized by the virtual instrument Lab VIEW software. It is proved by experiments that the accuracy of the gate generated by coincidence detection with edge effect is only determined by the stability index of the circuit rather than the resolution index, and the measurement accuracy is greatly improved to two to three orders of magnitude. This method has new principle, high measuring precision, simple equipment, easy to realize, and this measuring system has the advantages of small volume and high reliability.
【學位授予單位】:西安電子科技大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM935.1
【參考文獻】
相關(guān)期刊論文 前2條
1 張云華;宣宗強;關(guān)鵬;;高精度頻標比對實現(xiàn)的新方法[J];宇航計測技術(shù);2006年01期
2 周渭;相檢寬帶測頻儀器的擴展使用[J];宇航計測技術(shù);1994年01期
,本文編號:1981727
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/1981727.html
最近更新
教材專著