單晶硅薄膜的制備及在太陽(yáng)能電池、SERS中的應(yīng)用
本文選題:納米 + 拉曼光譜 ; 參考:《大連理工大學(xué)》2014年博士論文
【摘要】:提高單晶硅薄膜太陽(yáng)能電池的光電轉(zhuǎn)換效率、降低成本、提高制備面積,使太陽(yáng)能電池更有效地應(yīng)用于生產(chǎn)實(shí)踐中,是科研工作者致力研究的方向。本文采用濕法腐蝕、薄膜沉積、退火和薄膜轉(zhuǎn)移技術(shù)制備了納米多孔硅薄膜和柔性單晶硅薄膜太陽(yáng)能電池,提高了太陽(yáng)能電池光電轉(zhuǎn)換效率和制備面積。同時(shí)采用三維時(shí)域有限差分方法對(duì)納米薄膜進(jìn)行數(shù)值模擬,研究其物理機(jī)制,對(duì)實(shí)驗(yàn)結(jié)果給予理論解釋。 1.通過(guò)濕法腐蝕、濺射、退火等工藝,在單晶硅表面制備了金字塔型納米多孔硅抗反射薄膜。實(shí)驗(yàn)上測(cè)得其反射率在300-1050nm波長(zhǎng)范圍內(nèi)小于2%,在現(xiàn)有的納米多孔硅抗反射薄膜文獻(xiàn)中達(dá)到最好結(jié)果。將其應(yīng)用于薄膜或塊體單晶硅材料的太陽(yáng)能電池,可提高太陽(yáng)能電池的光電轉(zhuǎn)換效率。同時(shí),本文使用周期性的單晶硅金字塔襯底作為模板,利用納米壓印方法制備聚合物太陽(yáng)能電池抗反射薄膜。由于聚合物材料具有耐強(qiáng)酸堿性,柔軟和對(duì)可見(jiàn)光的高透射性,使得這種薄膜既可作為柔性薄膜太陽(yáng)能電池的抗反射薄膜又可作為太陽(yáng)能電池的保護(hù)膜,可被廣泛應(yīng)用于各種柔性薄膜太陽(yáng)能電池。 2.本文創(chuàng)新性地提出電極輔助轉(zhuǎn)移(Frame-Assisted Membrane Transfer, FAMT)技術(shù),相對(duì)于傳統(tǒng)轉(zhuǎn)移技術(shù),此方法的最大優(yōu)點(diǎn)是工藝簡(jiǎn)單、可大面積的轉(zhuǎn)移納米薄膜。本文利用FAMT技術(shù)制備了大面積單晶硅和磷化銦材料的柔性薄膜太陽(yáng)能電池。通過(guò)研究擴(kuò)散、退火、彎曲以及轉(zhuǎn)移對(duì)太陽(yáng)能電池性能的影響,實(shí)驗(yàn)結(jié)果得到1.7gm厚的柔性單晶硅薄膜太陽(yáng)能電池的光電轉(zhuǎn)換效率為1.12%;1μm柔性磷化銦薄膜太陽(yáng)能電池的光電轉(zhuǎn)換效率為1%,其功率重量比已接近國(guó)際領(lǐng)先水平。此方法制備的薄膜太陽(yáng)能電池不受基底材料的限制,提高柔性薄膜太陽(yáng)能電池的適應(yīng)性,可將其廣泛應(yīng)用于人們的生產(chǎn)生活中。 3.通過(guò)總結(jié)單晶硅金字塔腐蝕技術(shù)和金屬納米薄膜沉積技術(shù),同時(shí)在調(diào)研現(xiàn)有周期性金字塔SERS襯底文獻(xiàn)的基礎(chǔ)上,本文首次在非周期性金字塔表面沉積金納米薄膜制備SERS寸底。實(shí)驗(yàn)結(jié)果表明該襯底有效地提高了R6G探針?lè)肿永庾V檢測(cè)的靈敏度、強(qiáng)度和均勻性,其增強(qiáng)因子達(dá)到3.8×105。通過(guò)三維時(shí)域有限差分方法對(duì)此襯底進(jìn)行數(shù)值模擬,來(lái)研究其物理增強(qiáng)機(jī)制。首次證明該SERS襯底的物理增強(qiáng)主要來(lái)自表面等離子體增強(qiáng),同時(shí)發(fā)現(xiàn)這種增強(qiáng)位于金字塔與金字塔之間的交界線,我們稱(chēng)其為“熱線”,其有效地提高了襯底增強(qiáng)的強(qiáng)度和均勻性。
[Abstract]:To improve the photoelectric conversion efficiency, reduce the cost, increase the preparation area, and make the solar cells more effective in the production practice is the research direction of the scientific research workers to improve the photoelectric conversion efficiency of monocrystalline silicon thin film solar cells. Nano-porous silicon thin films and flexible monocrystalline silicon thin film solar cells were prepared by wet etching, thin film deposition, annealing and thin film transfer technology. The photovoltaic conversion efficiency and preparation area of solar cell were improved. At the same time, the three-dimensional finite-difference time-domain method is used to simulate the nanocrystalline films, the physical mechanism is studied, and the experimental results are explained theoretically. 1. Pyramidal porous silicon antireflective films were prepared on the surface of monocrystalline silicon by wet etching, sputtering and annealing. The reflectivity measured experimentally is less than 2 in the 300-1050nm wavelength range, and the best results have been obtained in the existing literature of nano-porous silicon antireflective films. The photovoltaic conversion efficiency of solar cells can be improved by applying them to solar cells with thin films or bulk monocrystalline silicon. At the same time, the periodic monocrystalline silicon pyramid substrate was used as a template to prepare polymer solar cell antireflective film by nano-imprint method. Due to their strong acid resistance, softness and high transmittance to visible light, the polymer materials can be used as both anti-reflective and protective films for flexible thin film solar cells. It can be widely used in various flexible thin film solar cells. 2. In this paper, the electrode assisted transfer Membrane transfer (FAMTT) technique is proposed. Compared with the traditional transfer technology, the biggest advantage of this method is that the technology is simple and can transfer nanocrystalline films in large area. In this paper, flexible thin film solar cells with large area monocrystalline silicon and indium phosphide materials were fabricated by FAMT technology. By studying the effects of diffusion, annealing, bending and transfer on the performance of solar cells, The experimental results show that the photovoltaic conversion efficiency of flexible monocrystalline silicon thin film solar cells with 1.7gm thickness is 1.12 渭 m and that of 1 渭 m flexible indium phosphide thin film solar cells is 1. The power weight ratio is close to the international leading level. The thin film solar cells prepared by this method are not limited by substrate materials and can be widely used in the production and life of people because of improving the adaptability of flexible thin film solar cells. 3. On the basis of summarizing the technology of monocrystalline silicon pyramidal etching and metal nanocrystalline film deposition, and on the basis of the existing literature of periodic pyramid SERS substrate, this paper first deposited gold nanocrystalline film on aperiodic pyramid surface to prepare SERS inch bottom. The experimental results show that the substrate can improve the sensitivity, intensity and uniformity of Raman spectra of R6G probe effectively, and the enhancement factor is 3.8 脳 10 ~ 5. The physical enhancement mechanism of the substrate is studied by numerical simulation of the substrate by three dimensional finite-difference time-domain method. It is the first time to prove that the physical enhancement of the SERS substrate comes mainly from surface plasma enhancement, and that the enhancement is located at the junction of the pyramid and the pyramid, which we call the "hot line." It effectively improves the intensity and uniformity of substrate enhancement.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TM914.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 瞿金蓉,胡明安,陳敬中,韓煒;納米粒子的熔點(diǎn)與粒徑的關(guān)系[J];地球科學(xué);2005年02期
2 馬楓茹;劉琨;張毅;潘石;;以新型銀膠為襯底的超低濃度R6G的拉曼光譜檢測(cè)[J];光散射學(xué)報(bào);2007年01期
3 趙萬(wàn)利;王賀陶;劉琨;張毅;潘石;;基于“熱點(diǎn)”效應(yīng)的表面增強(qiáng)拉曼散射光譜研究[J];光散射學(xué)報(bào);2008年01期
4 王俊俏;朱雙美;何金娜;程永光;范春珍;蔡根旺;梁二軍;;基于Klarite芯片的表面增強(qiáng)拉曼散射特性研究[J];光散射學(xué)報(bào);2012年01期
5 王繼英;魏凌;劉照軍;;中國(guó)古代藝術(shù)品常用礦物顏料的拉曼光譜[J];光散射學(xué)報(bào);2012年01期
6 趙虹霞;干福熹;;拉曼光譜技術(shù)在中國(guó)古玉、古玉器鑒定和研究中的應(yīng)用[J];光譜學(xué)與光譜分析;2009年11期
7 黃華,吳世法;納米銀膠的光化學(xué)制備及其特性研究[J];光子學(xué)報(bào);2005年11期
8 高春華;納米材料的基本效應(yīng)及其應(yīng)用[J];江蘇理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年06期
9 毛贛如,原小杰;等離子體增強(qiáng)CVD氮化硅作硅太陽(yáng)電池的減反射膜[J];太陽(yáng)能學(xué)報(bào);1988年03期
,本文編號(hào):1785837
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/1785837.html