基于DSP的同步發(fā)電機(jī)勵磁控制器的研究與開發(fā)
[Abstract]:Modern power system presents the characteristics of large unit power generation, UHV transmission and large system networking, and puts forward higher and stricter requirements for power quality and system stability. The excitation control of synchronous generator can effectively maintain the voltage level, provide qualified electric energy, ensure the safe operation of the unit and improve the technical index of the system. The advanced excitation control technology and high performance digital signal processor are widely used in modern power system, which can fully improve the stability of the system. Based on TMS320F28335DSP, integrated excitation control strategy, this paper studies and develops a set of excitation controller with simple circuit, perfect function, friendly interface, excellent performance, considerable economy, facing the laboratory and then meeting the requirements of small and medium-sized generating sets in engineering practice, which has certain engineering practical value. In this paper, the excitation automatic control system is summarized, three research directions of excitation mode, control theory and controller of excitation system and the research status of DSP at home and abroad are introduced and analyzed, the research goal of this paper is established, and the significance and practical value of the subject are expounded. Secondly, on the mathematical model of single machine system, the theoretical research and simulation of excitation law such as PID,PSS and multi-index nonlinear MNEC are completed, and the dynamic and static performance is better than the improved integrated PID discrete method ICPID, which is better than the traditional PID control, and these strategies are processed and realized by microcomputer. Then, under the fault condition of excitation power unit thyristor, the relationship between the control trigger angle and the rectifier output excitation voltage is analyzed qualitatively and quantitatively through theoretical derivation and simulation, and the corresponding solutions are put forward, which can effectively reduce the adverse effects of the fault on the system. Based on the research of excitation control theory, the controller is designed and developed in this paper. After familiar with the DSP development system, the hardware platform of the controller is built, including the establishment of the overall scheme, the selection of the main control chip, the design of the hardware schematic diagram, and the simulation test and manufacture of the core unit and the peripheral unit circuit. The design of the software part according to the modularization idea, including the clear programming principle, constructs the main program flow, compiles each function module program, at the same time, designs the software and hardware reliability to improve the controller performance. In addition, this paper adopts "cMT-SVR cMT-iV5 mobile device" cloud touch screen monitoring architecture, designs the interface and uses Modbus-RTU protocol to realize human-computer interaction. Finally, the hardware and software performance test, static debugging and test are completed in the laboratory environment, the related results are analyzed and summarized, and the appearance of the controller is designed to facilitate the production of excitation controller. The theory and practice show that the hardware and software of the excitation controller are coordinated, the control effect is good, and the performance meets the relevant national standards and industry guidelines, which establishes the cornerstone for the introduction of industrial products and the adaptation to the development of power system and market.
【學(xué)位授予單位】:廣西大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM31
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 譚劍輝;周俊;;水電機(jī)組勵磁系統(tǒng)改造可行性分析[J];大眾用電;2015年10期
2 張興旺;孫君光;熊巍;曹成軍;;國內(nèi)外勵磁系統(tǒng)技術(shù)發(fā)展綜述[J];水電站機(jī)電技術(shù);2014年03期
3 汪旎;劉輝;陳武暉;孫欣;譚倫農(nóng);;同步發(fā)電機(jī)能量穩(wěn)定勵磁控制[J];中國電機(jī)工程學(xué)報;2013年28期
4 梁志峰;葛睿;董昱;陳剛;;印度“7.30”、“7.31”大停電事故分析及對我國電網(wǎng)調(diào)度運(yùn)行工作的啟示[J];電網(wǎng)技術(shù);2013年07期
5 李霆;;FWL/B-1000勵磁系統(tǒng)在綏中1000MW機(jī)組上的應(yīng)用[J];沈陽工程學(xué)院學(xué)報(自然科學(xué)版);2013年02期
6 盧強(qiáng);梅生偉;;現(xiàn)代電力系統(tǒng)控制評述——清華大學(xué)電力系統(tǒng)國家重點(diǎn)實(shí)驗室相關(guān)科研工作縮影及展望[J];系統(tǒng)科學(xué)與數(shù)學(xué);2012年10期
7 阮陽;袁榮湘;;采用輸出反饋方式的電力系統(tǒng)非線性勵磁控制[J];中國電機(jī)工程學(xué)報;2011年34期
8 王書根;王振松;劉曉云;;Modbus協(xié)議的RS485總線通訊機(jī)的設(shè)計及應(yīng)用[J];自動化與儀表;2011年05期
9 林偉芳;湯涌;孫華東;郭強(qiáng);趙紅光;曾兵;;巴西“2·4”大停電事故及對電網(wǎng)安全穩(wěn)定運(yùn)行的啟示[J];電力系統(tǒng)自動化;2011年09期
10 ;Control strategy for an intelligent shearer height adjusting system[J];Mining Science and Technology;2010年06期
相關(guān)碩士學(xué)位論文 前7條
1 姜書燕;電力電子電路故障診斷與故障預(yù)測方法研究[D];湖南大學(xué);2016年
2 譚海青;同步發(fā)電機(jī)勵磁控制器的研究與設(shè)計[D];華中科技大學(xué);2014年
3 游曉楓;基于TMS320F2812的非線性勵磁調(diào)節(jié)器的研制[D];廣西大學(xué);2012年
4 鄧裕文;微分代數(shù)模型的ASVG與發(fā)電機(jī)勵磁非線性控制策略研究[D];廣西大學(xué);2012年
5 鄧超;同步發(fā)電機(jī)勵磁控制器研究與開發(fā)[D];華中科技大學(xué);2011年
6 李成偉;基于DSP的同步發(fā)電機(jī)勵磁控制器的研究[D];天津大學(xué);2006年
7 何彥民;基于DSP的自動勵磁控制裝置的研究[D];天津理工大學(xué);2005年
,本文編號:2502032
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/2502032.html