納米稀土永磁材料的微磁模擬與球磨制備
本文選題:納米永磁材料 + 永磁薄膜 ; 參考:《四川師范大學(xué)》2017年碩士論文
【摘要】:磁性是物質(zhì)的基本屬性,也是物理學(xué)研究的重要內(nèi)容。永磁材料是電磁轉(zhuǎn)化的核心部件,是重要的電子信息材料,其應(yīng)用范圍包括消費(fèi)電子、移動互聯(lián)網(wǎng)通訊、新能源汽車、節(jié)能設(shè)備以及新能源產(chǎn)業(yè)。在風(fēng)力發(fā)電設(shè)備,永磁高鐵電機(jī),航空航天儀表和核磁共振機(jī)等設(shè)備中都需要更高性能的永磁體。納米稀土永磁材料因其優(yōu)異的磁性能、廣闊的應(yīng)用前景和巨大的市場價值,使其成為當(dāng)前磁學(xué)研究領(lǐng)域的重要內(nèi)容。本文以SmCo_5/Fe/SmCo_5納米復(fù)合永磁薄膜和NdFeB微納米顆粒的球磨制備工藝為研究對象,主要做了兩個方面的研究:(1)采用微磁學(xué)方法模擬計算了SmCo_5/Fe/SmCo_5硬軟磁復(fù)合多層膜的退磁化過程。微磁學(xué)計算結(jié)果與文獻(xiàn)上報道的實驗結(jié)果進(jìn)行了對比。通過分析微磁學(xué)計算結(jié)果得到了軟磁層厚度變化對納米多層膜矯頑力的影響。本文的計算工作還給出了納米復(fù)合薄膜中軟磁相厚度為6納米和12納米時硬磁相和軟磁相的微觀磁矩在退磁過程中的演變情況,能夠?qū)嶒灡碚骱徒馕鲇嬎憬Y(jié)果進(jìn)行補(bǔ)充。計算結(jié)果表明軟磁厚度由小變大時,在6納米之后形核場和矯頑力逐漸開始分離,SmCo_5/Fe/SmCo_5硬軟磁復(fù)合多層膜的矯頑力機(jī)制由成核變?yōu)獒斣?2)采用控制球磨溫度的實驗方法和表征設(shè)備研究了溫度對球磨制備NdFeB微納米顆粒的粒度分布、微觀形貌結(jié)構(gòu)、矯頑力等的影響。本文測量了低溫球磨時球磨罐內(nèi)溫度的變化,改進(jìn)的溫度控制方法使得球磨時的溫度范圍更加確定。實驗表明溫度對球磨制備的NdFeB微納米顆粒的形貌結(jié)構(gòu),粒度分布影響十分顯著,進(jìn)而也影響了材料的矯頑力等磁性能。整體上,與常溫球磨相比,低溫球磨工藝產(chǎn)生的微納米顆粒更加細(xì)小均勻,并且磁性能要優(yōu)于常溫球磨。此外低溫球磨能夠減少微納米顆粒在球磨時產(chǎn)生的團(tuán)聚體數(shù)量,但是球磨時間過長卻并不能讓顆粒繼續(xù)細(xì)化。不同的低溫溫度對球磨NdFeB顆粒的細(xì)化效果影響也不同。
[Abstract]:Magnetism is not only the basic property of matter, but also the important content of physics research. Permanent magnet is the core component of electromagnetic transformation, and is an important electronic information material. Its applications include consumer electronics, mobile Internet communications, new energy vehicles, energy-saving equipment and new energy industry. Higher performance permanent magnets are needed in wind power plants, permanent magnet high-speed motors, aerospace instrumentation and nuclear magnetic resonance machines. Due to its excellent magnetic properties, wide application prospects and great market value, nanocrystalline rare earth permanent magnetic materials have become an important subject in the field of magnetic research. In this paper, the preparation process of SmCo_5/Fe/SmCo_5 nanocomposite permanent magnetic films and NdFeB microparticles by ball milling is studied in two aspects. (1) the demagnetization process of SmCo_5/Fe/SmCo_5 hard soft magnetic composite multilayers is simulated and calculated by micromagnetics method. The results of micromagnetic calculation are compared with the experimental results reported in the literature. The influence of the thickness of soft magnetic layer on the coercivity of nano-multilayer films was obtained by analyzing the results of micromagnetics calculation. In this paper, the evolution of the magnetic moments of hard and soft magnetic phases in the demagnetization process of the soft magnetic phase with the thickness of 6 nm and 12 nm is also given, which can be used to supplement the experimental characterization and analytical calculation results. The results show that when the soft magnetic thickness changes from small to large, After 6 nm nucleation field and coercivity began to separate SmCoS 5 / Fe / SmCo5 hard soft magnetic composite multilayer film from nucleation to pinning. (the experimental method and characterization equipment of controlling ball milling temperature were used to study the effect of temperature on the preparation of ball milling. Particle size distribution of NdFeB microparticles, The influence of microstructure, coercivity and so on. In this paper, the change of temperature in the ball mill tank is measured. The improved temperature control method makes the temperature range of ball mill more definite. The results show that temperature has a significant effect on the morphology and particle size distribution of NdFeB microparticles prepared by ball milling, and also affects the coercivity and other magnetic properties of the materials. On the whole, compared with the normal temperature ball mill, the microparticles produced by the low temperature ball milling process are more fine and uniform, and the magnetic properties are better than those of the normal temperature ball milling process. In addition, low temperature ball milling can reduce the number of agglomerates produced by ball milling, but too long milling time can not further refine the particles. The effect of low temperature on the refining effect of ball milling NdFeB particles is also different.
【學(xué)位授予單位】:四川師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉家平;岳明;張健;;表面活性劑輔助球磨——一種制備稀土永磁材料的新工藝[J];中國材料進(jìn)展;2015年11期
2 張志東;;磁性材料的磁結(jié)構(gòu)、磁疇結(jié)構(gòu)和拓?fù)浯沤Y(jié)構(gòu)[J];物理學(xué)報;2015年06期
3 戴蕾蕾;沈佳苗;;中國稀土企業(yè)欲破日企專利封鎖[J];中國外資;2014年17期
4 趙平;乃理;夏靜;丁浩峰;常景;;硬磁/軟磁多層膜的成核場、磁滯回線、磁相圖和臨界厚度[J];中國科學(xué):物理學(xué) 力學(xué) 天文學(xué);2012年07期
5 李浩;李鴻操;;高能球磨機(jī)技術(shù)探索[J];中國新技術(shù)新產(chǎn)品;2012年08期
6 ;Nucleation field,reversal mechanism and coercivity paradox in two-phased magnetic nanosystem[J];Science China(Physics,Mechanics & Astronomy);2011年07期
7 ;The influence of interface exchange coupling on the demagnetization process for perpendicularly oriented FePt/α-Fe/FePt trilayers[J];Science China(Physics,Mechanics & Astronomy);2010年10期
8 戴樂陽;陳清林;林少芬;歐陽柳章;;高能球磨中促進(jìn)粉體細(xì)化的主要因素研究[J];材料導(dǎo)報;2009年22期
9 王會良;和金生;;國際釹鐵硼生產(chǎn)企業(yè)專利戰(zhàn)略探析[J];稀土;2007年01期
10 吳春亮;艾志宏;;EMGA-620W定氧儀測定熱帶鋼中氧含量[J];承鋼技術(shù);2005年03期
相關(guān)博士學(xué)位論文 前1條
1 王大鵬;機(jī)械合金化制備納米復(fù)合永磁材料及其磁性能研究[D];大連理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前2條
1 高紅梅;片狀微納米稀土永磁材料制備及物理性質(zhì)研究[D];吉林大學(xué);2014年
2 張松林;Sm-Fe-N納米薄片的制備、結(jié)構(gòu)及其磁性能研究[D];昆明理工大學(xué);2014年
,本文編號:1824506
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/1824506.html