無(wú)線電能傳輸系統(tǒng)信號(hào)與電能同步傳輸技術(shù)
本文選題:感應(yīng)式無(wú)線電能傳輸 切入點(diǎn):信號(hào)同步傳輸 出處:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:隨著科技日新月異的發(fā)展,人們?cè)诟鱾(gè)領(lǐng)域都取得了長(zhǎng)足的進(jìn)步。在全球?qū)﹄娔苄枨笕諠u增長(zhǎng)的同時(shí),傳統(tǒng)輸電方式的弊端也逐漸顯露出來(lái)。圍繞新型輸電方式的研究,衍生出無(wú)線電能傳輸技術(shù),在多個(gè)領(lǐng)域內(nèi)有了成熟可靠的應(yīng)用,F(xiàn)階段無(wú)線電能傳輸技術(shù)仍有很大的研究空間,包括信號(hào)與電能同步傳輸技術(shù)、電磁兼容性等。本文從研究穩(wěn)定可靠的信號(hào)同步傳輸技術(shù)角度出發(fā),設(shè)計(jì)感應(yīng)式無(wú)線電能傳輸系統(tǒng)各部分結(jié)構(gòu),并對(duì)松耦合變壓器進(jìn)行研究。首先,本文分析感應(yīng)式無(wú)線電能傳輸系統(tǒng)的結(jié)構(gòu),從電路功能角度將系統(tǒng)分為四大部分,依次比較分析各部分常見(jiàn)拓?fù)涞膬?yōu)劣。研究四種基本補(bǔ)償結(jié)構(gòu)的特性,歸納串聯(lián)補(bǔ)償結(jié)構(gòu)下系統(tǒng)電壓電流的輸出特性,為接下來(lái)的研究奠定基礎(chǔ)。其次,本文詳細(xì)分析四種有代表性的信號(hào)同步傳輸技術(shù);結(jié)合已確定的感應(yīng)式無(wú)線電能傳輸系統(tǒng)拓?fù)?從理論上分析改變補(bǔ)償電容對(duì)于信號(hào)傳輸?shù)目尚行。綜合考慮三種調(diào)制解調(diào)方式后,設(shè)計(jì)一種基于改變諧振電容的信號(hào)與電能同步傳輸方案,對(duì)實(shí)現(xiàn)電路的工作模態(tài)進(jìn)行詳細(xì)地分析,并從設(shè)計(jì)思路、參數(shù)選取等角度闡述系統(tǒng)硬件設(shè)計(jì)。再次,本文對(duì)信號(hào)傳輸信道-松耦合變壓器進(jìn)行優(yōu)化設(shè)計(jì)。先對(duì)EE型磁芯松耦合變壓器建立修正磁路模型,通過(guò)計(jì)算得出圓形線圈寬度的最優(yōu)取值。再利用Ansoft有限元分析工具,對(duì)線圈尺寸、寬度、磁芯結(jié)構(gòu)數(shù)量等參數(shù)進(jìn)行仿真分析,仿真結(jié)論驗(yàn)證理論分析的正確性,確定松耦合變壓器優(yōu)化設(shè)計(jì)的目標(biāo)與方向。最后,本文利用Cadence Pspice分析工具對(duì)感應(yīng)式無(wú)線電能傳輸系統(tǒng)信號(hào)與電能同步傳輸技術(shù)進(jìn)行仿真驗(yàn)證,觀測(cè)各點(diǎn)波形,優(yōu)化參數(shù)并搭建實(shí)驗(yàn)平臺(tái)。在實(shí)驗(yàn)平臺(tái)上,按照理論分析和仿真結(jié)果,對(duì)系統(tǒng)的逆變器中點(diǎn)電壓電流、負(fù)載電壓、負(fù)載恒壓輸出特性和信號(hào)雙向發(fā)送與提取技術(shù)進(jìn)行了效果驗(yàn)證,取得了理想的結(jié)果。
[Abstract]:With the rapid development of science and technology, people have made great progress in various fields. With the increasing global demand for electricity, the disadvantages of traditional transmission methods are gradually exposed. The radio energy transmission technology has been developed and has been used in many fields. At present, the radio energy transmission technology still has a lot of research space, including the synchronous transmission technology of signal and electric energy. Electromagnetic compatibility and so on. From the point of view of stable and reliable signal synchronous transmission technology, this paper designs the structure of inductive radio energy transmission system, and studies the loosely coupled transformer. This paper analyzes the structure of inductive radio energy transmission system, divides the system into four parts from the point of view of circuit function, compares and analyzes the advantages and disadvantages of the common topologies of each part in turn, and studies the characteristics of the four basic compensation structures. The output characteristics of the system voltage and current under the series compensation structure are summarized, which lays a foundation for the following research. Secondly, four typical synchronous signal transmission techniques are analyzed in detail in this paper. Combining with the topology of inductive radio energy transmission system, the feasibility of changing compensation capacitor for signal transmission is analyzed theoretically. After considering three modulation and demodulation modes, A synchronous transmission scheme of signal and electric energy based on changing resonant capacitance is designed. The working mode of the circuit is analyzed in detail, and the hardware design of the system is described from the point of view of design idea, parameter selection and so on. This paper optimizes the design of signal transmission channel-loosely coupled transformer. First, the modified magnetic circuit model is established for EE type loosely coupled transformer with magnetic core, and the optimum value of the width of circular coil is obtained by calculation. Then the Ansoft finite element analysis tool is used. The parameters such as coil size, width and the number of magnetic core structure are simulated and analyzed. The simulation results verify the correctness of the theoretical analysis, and determine the objective and direction of the optimal design of loosely coupled transformers. In this paper, Cadence Pspice analysis tool is used to simulate and verify the synchronous transmission technology of signal and electric energy of inductive radio energy transmission system, to observe the waveform of each point, to optimize the parameters and to build the experimental platform. According to the theoretical analysis and simulation results, the effect of the inverter midpoint voltage and current, load voltage, load constant voltage output characteristics and signal bidirectional transmission and extraction technology are verified, and the ideal results are obtained.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM724
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱春波;姜金海;宋凱;張千帆;;電動(dòng)汽車(chē)動(dòng)態(tài)無(wú)線充電關(guān)鍵技術(shù)研究進(jìn)展[J];電力系統(tǒng)自動(dòng)化;2017年02期
2 侯佳;陳乾宏;任小永;阮新波;Siu-Chung Wong;Chi K.Tse;;S/SP非接觸諧振變換器的時(shí)域特性分析[J];中國(guó)電機(jī)工程學(xué)報(bào);2015年08期
3 程志遠(yuǎn);朱春波;魏國(guó);宋凱;逯仁貴;田理達(dá);;串-并補(bǔ)償結(jié)構(gòu)大功率感應(yīng)充電系統(tǒng)諧振變換器[J];電工技術(shù)學(xué)報(bào);2014年09期
4 郭堯;朱春波;宋凱;魏國(guó);逯仁貴;徐石明;;平板磁芯磁耦合諧振式無(wú)線電能傳輸技術(shù)[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2014年05期
5 王振亞;王學(xué)梅;張波;丘東元;;電動(dòng)汽車(chē)無(wú)線充電技術(shù)的研究進(jìn)展[J];電源學(xué)報(bào);2014年03期
6 嚴(yán)茂水;廖承林;陶成軒;王麗芳;;無(wú)線電能傳輸系統(tǒng)線圈偏移研究綜述:分析,效率提升與定位(英文)[J];電工技術(shù)學(xué)報(bào);2013年S2期
7 蘇玉剛;徐健;謝詩(shī)云;唐春森;孫雨;;電場(chǎng)耦合型無(wú)線電能傳輸系統(tǒng)調(diào)諧技術(shù)[J];電工技術(shù)學(xué)報(bào);2013年11期
8 張獻(xiàn);楊慶新;崔玉龍;劉會(huì)軍;金亮;;大功率無(wú)線電能傳輸系統(tǒng)能量發(fā)射線圈設(shè)計(jì)、優(yōu)化與驗(yàn)證[J];電工技術(shù)學(xué)報(bào);2013年10期
9 黃學(xué)良;譚林林;陳中;強(qiáng)浩;周亞龍;王維;曹偉杰;;無(wú)線電能傳輸技術(shù)研究與應(yīng)用綜述[J];電工技術(shù)學(xué)報(bào);2013年10期
10 張建偉;曹彪;;EE型松耦合變壓器的精確磁路模型和仿真分析[J];電子設(shè)計(jì)工程;2013年11期
相關(guān)會(huì)議論文 前1條
1 楊雁南;;激光用于無(wú)線電力傳輸?shù)奶剿鱗A];中國(guó)光學(xué)學(xué)會(huì)2011年學(xué)術(shù)大會(huì)摘要集[C];2011年
相關(guān)碩士學(xué)位論文 前7條
1 伏思慶;基于頻率和相位調(diào)制的ICPT系統(tǒng)信號(hào)雙向傳輸[D];重慶大學(xué);2014年
2 張愛(ài)國(guó);感應(yīng)式電能和信號(hào)同步傳輸技術(shù)的研究[D];哈爾濱工業(yè)大學(xué);2013年
3 趙子明;感應(yīng)耦合式鋰電池?zé)o線充電平臺(tái)設(shè)計(jì)研究[D];浙江大學(xué);2013年
4 楊磊;適用于海底觀測(cè)網(wǎng)絡(luò)的水下非接觸式數(shù)據(jù)傳輸技術(shù)研究[D];浙江大學(xué);2011年
5 王琛琛;感應(yīng)耦合式電能與信號(hào)混合傳輸系統(tǒng)研究[D];重慶大學(xué);2010年
6 周錦鋒;感應(yīng)耦合電能傳輸系統(tǒng)中信號(hào)傳輸技術(shù)研究[D];重慶大學(xué);2009年
7 趙偉;深海非接觸式雙向信號(hào)傳輸技術(shù)研究[D];浙江大學(xué);2004年
,本文編號(hào):1696396
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/1696396.html