高速公路短時(shí)交通量預(yù)測(cè)
[Abstract]:With the continuous development and construction of freeway, more and more people have taken it as the main choice of daily travel mode because of its efficient and rapid traffic capacity. However, with the continuous improvement of people's travel demand, the existing road network capacity has been unable to meet the existing travel volume, resulting in more and more traffic congestion, and the consequences are the frequent occurrence of traffic accidents and the deterioration of environmental pollution. Therefore, the research on the theory and method of short-term traffic volume prediction is a necessary prerequisite for realizing reasonable and effective traffic guidance, alleviating traffic congestion, reducing frequent traffic accidents and improving environmental pollution. Nowadays, with the continuous improvement of data acquisition technology and equipment of expressway, it is possible to predict the short-term traffic volume of expressway. Based on the predictability of short-term traffic volume of expressway, different prediction models are established and improved. The predicted results are compared. First of all, this paper summarizes the research background, significance and current research situation of short-term traffic volume prediction, and analyzes the shortcomings of various forecasting methods and models. In this paper, the short time traffic flow of Lanhai high speed highway and Wucan high speed highway is analyzed by means of effective collection method. Secondly, some basic concepts and parameters of chaos theory are introduced in order to better analyze the time series and reconstruct its phase space. The delay time and embedding dimension of two groups of experimental data of Lanhai high-speed and Wu-can high-speed are calculated by C-C algorithm, and the phase space of the original time series is reconstructed. The maximum Lyapunov exponent of the two groups of data is calculated by the method of small amount of data, and the results are all greater than zero, which indicates that both groups of data can be analyzed and studied by chaos theory. Then, the related concepts of artificial neural network are introduced. Wavelet neural network and RBF neural network are used to predict the short-time traffic volume of freeway. By using the delay time and embedding dimension of the reconstructed two groups of data, the number of neurons in the input and output layers of the network is reasonably designed, and a good network topology is established. The prediction experiments of the data collected at the high speed of Lanhai and Wu-can are carried out in the established network. By analyzing and calculating the experimental results, it can be concluded that the prediction effect of RBF neural network is better than that of wavelet neural network. Finally, aiming at the shortcomings of the two neural networks, genetic algorithm is used to optimize the initial parameters of the two networks to ensure that the output of the network is better. After the two groups of data collected at the high speed of Lanhai and Wu-can are forecasted, it can be concluded that the two improved neural networks have improved the prediction error, and at the same time, The improved RBF neural network prediction model is also better than the improved wavelet neural network prediction model, which can better realize the short-term traffic volume prediction of expressway.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:U491.14
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 商強(qiáng);楊兆升;張偉;邴其春;周熙陽(yáng);;基于奇異譜分析和CKF-LSSVM的短時(shí)交通流量預(yù)測(cè)[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2016年06期
2 傅成紅;張陽(yáng);;基于參數(shù)優(yōu)化的SVR城市群交通需求預(yù)測(cè)方法[J];系統(tǒng)工程;2016年02期
3 李曼;;小波分析實(shí)現(xiàn)圖像去噪[J];電腦知識(shí)與技術(shù);2015年05期
4 李巧茹;趙蓉;陳亮;;基于SVM與自適應(yīng)時(shí)空數(shù)據(jù)融合的短時(shí)交通流量預(yù)測(cè)模型[J];北京工業(yè)大學(xué)學(xué)報(bào);2015年04期
5 王珂;田瑞;王菲菲;;基于灰色遺傳支持向量機(jī)的短時(shí)交通流預(yù)測(cè)[J];武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版);2014年05期
6 賈顯超;陳旭梅;弓晉麗;張溪;郭淑霞;;基于混沌理論的短期交通流量多步預(yù)測(cè)[J];交通信息與安全;2013年06期
7 孫棣華;李超;廖孝勇;;高速公路短時(shí)交通流量預(yù)測(cè)的改進(jìn)非參數(shù)回歸算法[J];公路交通科技;2013年11期
8 侯越;;DE優(yōu)化T-S模糊神經(jīng)網(wǎng)絡(luò)的交通流量預(yù)測(cè)[J];計(jì)算機(jī)工程與設(shè)計(jì);2013年09期
9 傅貴;韓國(guó)強(qiáng);逯峰;許子鑫;;基于支持向量機(jī)回歸的短時(shí)交通流預(yù)測(cè)模型[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年09期
10 張玉梅;吳曉軍;白樹(shù)林;;交通流量序列混沌特性分析及DFPSOVF預(yù)測(cè)模型[J];物理學(xué)報(bào);2013年19期
相關(guān)博士學(xué)位論文 前4條
1 吳華穩(wěn);混沌時(shí)間序列分析及在鐵路貨運(yùn)量預(yù)測(cè)中的應(yīng)用研究[D];中國(guó)鐵道科學(xué)研究院;2014年
2 馬慶祿;基于混沌理論的交通狀態(tài)預(yù)測(cè)研究[D];重慶大學(xué);2012年
3 王義康;高爐冶煉復(fù)雜性分析及支持向量機(jī)擴(kuò)展建模預(yù)測(cè)研究[D];浙江大學(xué);2012年
4 韓曉霞;混沌與支持向量機(jī)結(jié)合的多相催化建模與優(yōu)化研究[D];太原理工大學(xué);2010年
相關(guān)碩士學(xué)位論文 前5條
1 肖凡;基于改進(jìn)的RBF神經(jīng)網(wǎng)絡(luò)對(duì)股市混沌效應(yīng)預(yù)測(cè)[D];中國(guó)海洋大學(xué);2014年
2 李騰飛;復(fù)雜光照條件下光伏發(fā)電系統(tǒng)輸出特性及最大功率點(diǎn)跟蹤研究[D];太原理工大學(xué);2014年
3 劉士劍;基于GA-BPNN的光伏最大功率點(diǎn)跟蹤控制研究[D];南京理工大學(xué);2013年
4 鄭令;基于小波神經(jīng)網(wǎng)絡(luò)的機(jī)械故障診斷方法的研究[D];大連交通大學(xué);2009年
5 孔明;基于神經(jīng)網(wǎng)絡(luò)和模糊系統(tǒng)的非線性隨機(jī)控制[D];華中科技大學(xué);2005年
,本文編號(hào):2227228
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/2227228.html