非加勁低屈服點(diǎn)鋼板剪力墻結(jié)構(gòu)受力行為研究
本文選題:非加勁低屈服點(diǎn)鋼板剪力墻結(jié)構(gòu) + 循環(huán)本構(gòu)模型; 參考:《北京交通大學(xué)》2017年碩士論文
【摘要】:低屈服點(diǎn)鋼板剪力墻結(jié)構(gòu)是一種高延性、高耗能結(jié)構(gòu)體系,能夠滿(mǎn)足高層及超高層建筑的發(fā)展需要,實(shí)現(xiàn)“高性能結(jié)構(gòu)形式與高性能材料相結(jié)合,承重構(gòu)件和耗能元件相結(jié)合”的設(shè)計(jì)理念,為高層及超高層建筑結(jié)構(gòu)延性抗震提供很好的解決方案。但目前國(guó)內(nèi)外對(duì)低屈服點(diǎn)鋼板剪力墻結(jié)構(gòu)的試驗(yàn)研究和理論研究較少,沒(méi)有形成完整的理論分析體系,缺少相應(yīng)設(shè)計(jì)方法。本文從低屈服點(diǎn)鋼材的材料性能出發(fā),采用試驗(yàn)研究和數(shù)值模擬相結(jié)合的方法,對(duì)非加勁低屈服點(diǎn)鋼板剪力墻結(jié)構(gòu)受力行為進(jìn)行系統(tǒng)研究,開(kāi)展邊緣框架作用分析,確定了邊緣框架柱柔度系數(shù)限值及內(nèi)嵌鋼板承擔(dān)的剪力比例,并給出設(shè)計(jì)建議。本文的工作主要包含以下幾個(gè)方面:(1)完成35個(gè)低屈服點(diǎn)鋼材LYP100和LYP160試件在單調(diào)和12種循環(huán)加載制度下的材性試驗(yàn),標(biāo)定了低屈服點(diǎn)鋼材的混合強(qiáng)化參數(shù)并進(jìn)行驗(yàn)證,得到兩種鋼材的循環(huán)本構(gòu)關(guān)系,為后續(xù)研究低屈服點(diǎn)鋼板剪力墻整體結(jié)構(gòu)的受力行為提供基礎(chǔ)數(shù)據(jù)(第2章)。(2)采用通用有限元軟件ABAQUS,建立低屈服點(diǎn)薄鋼板剪力墻結(jié)構(gòu)的非線(xiàn)性數(shù)值分析模型,采用上述低屈服點(diǎn)鋼材循環(huán)本構(gòu)模型,對(duì)國(guó)內(nèi)外典型低屈服點(diǎn)薄鋼板剪力墻試驗(yàn)進(jìn)行了數(shù)值模擬,驗(yàn)證了數(shù)值分析手段的準(zhǔn)確性和適用性(第3章)。(3)采用數(shù)值方法對(duì)低屈服點(diǎn)鋼板剪力墻結(jié)構(gòu)的抗側(cè)性能影響因素進(jìn)行參數(shù)化分析(包括寬高比、高厚比和邊緣框架柱的柔度系數(shù),共計(jì)360個(gè)模型),重點(diǎn)關(guān)注邊緣框架對(duì)承載性能的貢獻(xiàn)。從內(nèi)嵌鋼板拉力帶發(fā)展程度及承載性能兩個(gè)方面獲取非加勁低屈服點(diǎn)鋼板剪力墻結(jié)構(gòu)邊緣框架柱柔度系數(shù)限值,并分析了結(jié)構(gòu)的承載效率,給出柱柔度系數(shù)最優(yōu)建議值,為低屈服點(diǎn)鋼板剪力墻結(jié)構(gòu)的邊緣框架柱設(shè)計(jì)提供重要依據(jù)(第4章)。(4)基于低屈服點(diǎn)鋼板剪力墻結(jié)構(gòu)抗側(cè)性能影響因素的參數(shù)化分析結(jié)果,分析低屈服點(diǎn)鋼板剪力墻結(jié)構(gòu)的受力全過(guò)程,得出不同受力階段內(nèi)嵌鋼板與邊緣框架之間的剛度、剪力分配規(guī)律,確定內(nèi)嵌鋼板與邊緣框架之間的剪力分配關(guān)系,進(jìn)而量化邊緣框架柱對(duì)承載力的貢獻(xiàn),為低屈服點(diǎn)鋼板剪力墻內(nèi)嵌鋼板及邊緣框架的優(yōu)化設(shè)計(jì)提供必要條件(第5章)。
[Abstract]:The steel plate shear wall structure with low yield point is a kind of high ductility and high energy dissipation structure system, which can meet the development needs of high-rise and super high-rise buildings and realize the combination of high performance structure form and high performance material. The design concept of the combination of load-bearing components and energy-dissipation elements provides a good solution for the ductility seismic resistance of high-rise and super-high-rise building structures. But at present, there are few experimental and theoretical studies on steel plate shear wall structures with low yield point at home and abroad, so that a complete theoretical analysis system is not formed and corresponding design methods are lacking. In this paper, based on the material properties of low yield point steel, the mechanical behavior of non-stiffened low yield point steel plate shear wall structure is systematically studied by means of experimental study and numerical simulation, and the analysis of the effect of edge frame is carried out. The limit value of the column compliance coefficient and the shear ratio of the embedded steel plate are determined, and the design suggestions are given. The main work of this paper includes the following aspects: (1) the material properties of 35 low yield point steels LYP100 and LYP160 under monotonic and 12 cyclic loading systems have been tested and the mixed strengthening parameters of low yield point steels have been calibrated and verified. The cyclic constitutive relations of two kinds of steels are obtained. In order to provide basic data for further study on the behavior of steel plate shear wall with low yield point (chapter 2). (2), a nonlinear numerical analysis model of thin steel plate shear wall structure with low yield point is established by using the universal finite element software Abaqus. Using the cyclic constitutive model of low yield point steel, numerical simulation of typical low yield point thin steel plate shear wall tests at home and abroad has been carried out. The accuracy and applicability of the numerical analysis method (Chapter 3,). (3) are verified. The parameterized analysis (including the ratio of width to height) of the factors affecting the lateral behavior of steel plate shear wall structures with low yield point is carried out by numerical method. The ratio of height to thickness and the flexibility coefficient of frame columns with edges are 360 models in total, focusing on the contribution of edge frames to the bearing performance. In this paper, the limit value of column flexibility coefficient of frame with non-stiffened low yield point steel plate shear wall structure is obtained from two aspects of the development degree and bearing capacity of inlay steel plate tensile belt, and the bearing efficiency of the structure is analyzed, and the optimum suggested value of column compliance coefficient is given. This paper provides an important basis for the design of edge frame columns of steel plate shear wall structures with low yield point (Chapter 4). (4) based on the parameterized analysis results of the factors affecting the lateral behavior of steel plate shear wall structures with low yield points. Based on the analysis of the whole process of the shear wall structure with low yield point, the stiffness and shear force distribution between the inlaid steel plate and the edge frame in different stress stages are obtained, and the shear distribution relationship between the inlaid steel plate and the edge frame is determined. Furthermore, the contribution of the edge frame columns to the bearing capacity is quantified, which provides the necessary conditions for the optimization design of the steel plate embedded in the steel plate shear wall with low yield point and the edge frame (Chapter 5).
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TU392.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王萌;錢(qián)鳳霞;楊維國(guó);楊璐;;低屈服點(diǎn)鋼材與Q345B和Q460D鋼材本構(gòu)關(guān)系對(duì)比研究[J];工程力學(xué);2017年02期
2 王萌;錢(qián)鳳霞;楊維國(guó);;低屈服點(diǎn)LYP160鋼材本構(gòu)關(guān)系研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2017年02期
3 房晨;郝際平;袁昌魯;樊春雷;邊浩;;密肋框格防屈曲低屈服點(diǎn)鋼板剪力墻抗震性能試驗(yàn)研究[J];土木工程學(xué)報(bào);2016年05期
4 王佼姣;石永久;王元清;潘鵬;牧野俊雄;齊雪;;低屈服點(diǎn)鋼材LYP100循環(huán)加載試驗(yàn)[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2015年08期
5 王萌;楊維國(guó);;薄鋼板剪力墻結(jié)構(gòu)滯回行為研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2015年01期
6 石永久;王佼姣;王元清;潘鵬;牧野俊雄;齊雪;;循環(huán)荷載下低屈服點(diǎn)鋼材LYP225的力學(xué)性能[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年06期
7 金雙雙;歐進(jìn)萍;;考慮邊緣框架貢獻(xiàn)的鋼板剪力墻結(jié)構(gòu)設(shè)計(jì)[J];工程力學(xué);2014年03期
8 王佼姣;石永久;嚴(yán)紅;王元清;潘鵬;牧野俊雄;齊雪;;低屈服點(diǎn)全鋼防屈曲支撐抗震性能試驗(yàn)研究[J];土木工程學(xué)報(bào);2013年10期
9 王元清;常婷;石永久;;循環(huán)荷載下奧氏體不銹鋼的本構(gòu)關(guān)系試驗(yàn)研究[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年06期
10 施剛;王飛;戴國(guó)欣;石永久;王元清;;Q460D高強(qiáng)度結(jié)構(gòu)鋼材循環(huán)加載試驗(yàn)研究[J];土木工程學(xué)報(bào);2012年07期
相關(guān)會(huì)議論文 前1條
1 王萌;楊維國(guó);;低屈服點(diǎn)鋼板剪力墻抗震行為研究進(jìn)展[A];鋼結(jié)構(gòu)工程研究(十)——中國(guó)鋼結(jié)構(gòu)協(xié)會(huì)結(jié)構(gòu)穩(wěn)定與疲勞分會(huì)第14屆(ISSF-2014)學(xué)術(shù)交流會(huì)暨教學(xué)研討會(huì)論文集[C];2014年
相關(guān)博士學(xué)位論文 前3條
1 金雙雙;防屈曲開(kāi)斜槽鋼板剪力墻及其結(jié)構(gòu)抗震減振性能研究[D];哈爾濱工業(yè)大學(xué);2016年
2 王佼姣;低屈服點(diǎn)鋼防屈曲支撐及其框架抗震性能研究[D];清華大學(xué);2015年
3 王萌;強(qiáng)烈地震作用下鋼框架的損傷退化行為[D];清華大學(xué);2013年
相關(guān)碩士學(xué)位論文 前5條
1 唐柏杰;低屈服點(diǎn)鋼板剪力墻結(jié)構(gòu)抗震性能評(píng)估[D];江蘇科技大學(xué);2016年
2 吳群;低屈服點(diǎn)鋼板剪力墻結(jié)構(gòu)基于性能的抗震設(shè)計(jì)方法研究[D];江蘇科技大學(xué);2016年
3 黃育琪;低屈服點(diǎn)鋼板剪力墻力學(xué)性能研究[D];西安建筑科技大學(xué);2013年
4 徐建;非加勁薄鋼板剪力墻性能試驗(yàn)與設(shè)計(jì)方法研究[D];重慶大學(xué);2012年
5 董子建;非加勁鋼板剪力墻試驗(yàn)與理論研究[D];西安建筑科技大學(xué);2005年
,本文編號(hào):2079043
本文鏈接:http://www.sikaile.net/jianzhugongchenglunwen/2079043.html