基于粒子群算法的超聲測溫系統(tǒng)研究
[Abstract]:The energy problem has become the core issue in the world. It is urgent to use new technology to transform the energy-consuming industry, which is represented by chemical industry and metallurgy. Microwave heating instead of traditional heating can greatly improve the efficiency of energy utilization. To achieve the purpose of energy saving and emission reduction. However, there are still some technical bottlenecks in large-scale industrial application: it is difficult to realize the high-efficient, safe and reliable application of high-power microwave source. The existence of these problems is rooted in the lack of effective means of information acquisition, processing and control in the process of interaction between microwave and time-varying medium, and the perception of temperature field in the medium is the key to the effectiveness of the control. Considering the particularity of the industrial processing environment, it is difficult to realize the requirement of temperature measurement by traditional temperature measurement method. The ultrasonic temperature measurement technology has broken through the limitation of ordinary temperature measurement method. As a non-contact temperature measurement method, ultrasonic temperature measurement technology has the characteristics of wide measurement range, small interference to the measured temperature field, simple sensor arrangement, and can monitor the transient change of temperature field in real time. The advantages of temperature measurement in special environment, such as strong vibration and strong electromagnetic interference, are widely used in industrial boiler combustion, marine hydrothermal, storage of grain in warehouse and plasma chamber, nuclear reactor, steam turbine intake, inert gas, Temperature field measurement in the field of temperature standards. Ultrasonic temperature measurement is based on the fact that the velocity of ultrasonic wave propagates in the medium varies with the temperature of the medium. The temperature of the medium can be obtained indirectly by measuring the flight time of the ultrasonic wave at different temperatures in the medium. Therefore, the accurate measurement of ultrasonic flyover time is the key factor that affects the accuracy of ultrasonic temperature measurement. Aiming at the difficulty of determining ultrasonic flyover time, a method of ultrasonic flyover time measurement based on particle swarm optimization (PSO) algorithm is proposed in this paper. First, a set of double excitation transmitting signals are given to the transmitter, then the envelope of the received two echo signals is obtained by Hilbert transform method, and the rising edge of the envelope signal is fitted by the mixed exponential model. The objective function is optimized by the least square method, and the parameters are estimated by using particle swarm optimization algorithm. The separation point of the rising edge of the twice envelope signal is obtained, and the ultrasonic flying time is obtained, and then the temperature value on the flight path is obtained. In this paper, the design and construction of ultrasonic temperature measurement system are introduced in detail from the aspects of hardware and software, and the proposed method is verified experimentally on the two-dimensional and three-path physical platform, and the statistics and analysis of experimental data and results are carried out. It is proved that the proposed method combined with the designed ultrasonic temperature measurement system can achieve high temperature measurement accuracy.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP18;TB559
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王建霞,史杰,吳麗輝,孔美靜;非接觸智能測溫系統(tǒng)的設(shè)計(jì)原理[J];河北工業(yè)科技;2000年03期
2 曹文鋼;智能化多點(diǎn)巡回測溫系統(tǒng)[J];中外技術(shù)情報(bào);1996年09期
3 杜鵬志;;優(yōu)化熱偶安裝模式 提高測溫系統(tǒng)準(zhǔn)確性[J];黑龍江科技信息;2012年31期
4 夏伯雄,白艷;美國地球測溫系統(tǒng)將投入營運(yùn)[J];機(jī)電一體化;2000年04期
5 萬冬;;新型多功能測溫系統(tǒng)[J];科技信息(科學(xué)教研);2007年28期
6 施德恒;孫金鋒;朱遵略;劉玉芳;;一種被動(dòng)式單波長實(shí)時(shí)測溫系統(tǒng)的優(yōu)化設(shè)計(jì)[J];光子學(xué)報(bào);2008年01期
7 張江印;;基于單片機(jī)的多點(diǎn)測溫系統(tǒng)[J];實(shí)驗(yàn)室研究與探索;2012年10期
8 張福斌;;微處理機(jī)自動(dòng)巡回測溫系統(tǒng)[J];成都大學(xué)學(xué)報(bào)(自然科學(xué)版);1984年01期
9 施德恒,孫金鋒,陳玉科,劉玉芳,黃國慶;一種雙波長光纖測溫系統(tǒng)波長帶寬的優(yōu)化設(shè)計(jì)[J];中國激光;2004年11期
10 施德恒,劉玉芳,孫金鋒,陳玉科,黃國慶;一種實(shí)用化實(shí)時(shí)測溫系統(tǒng)工作波長優(yōu)化設(shè)計(jì)的進(jìn)一步分析[J];光子學(xué)報(bào);2004年06期
相關(guān)會(huì)議論文 前10條
1 黃琦志;郝建生;李軻;;一種新型全自動(dòng)測溫系統(tǒng)在糧庫中的應(yīng)用[A];中國儀器儀表學(xué)會(huì)第五屆青年學(xué)術(shù)會(huì)議論文集[C];2003年
2 郭象峗;田紹彥;戴秀麗;;峽山水庫水電站測溫系統(tǒng)改造探討[A];山東水利學(xué)會(huì)第九屆優(yōu)秀學(xué)術(shù)論文集[C];2004年
3 權(quán)萬紅;;無線測溫系統(tǒng)在高壓電氣設(shè)備上的應(yīng)用[A];全國冶金自動(dòng)化信息網(wǎng)2011年年會(huì)論文集[C];2011年
4 趙恒;;分布式光纖測溫系統(tǒng)在冶金電氣工程中的應(yīng)用[A];全國冶金自動(dòng)化信息網(wǎng)2010年年會(huì)論文集[C];2010年
5 劉肅;劉位平;李麗萍;張君靜;;回轉(zhuǎn)窯無線限測溫系統(tǒng)[A];中國金屬學(xué)會(huì)2008年非高爐煉鐵年會(huì)文集[C];2008年
6 畢衛(wèi)紅;付興虎;;基于MSP430F1122單片機(jī)的新型測溫系統(tǒng)[A];中國光學(xué)學(xué)會(huì)2006年學(xué)術(shù)大會(huì)論文摘要集[C];2006年
7 劉超;王坤;;蒸汽環(huán)境下比色測溫系統(tǒng)參數(shù)的優(yōu)選設(shè)計(jì)[A];2007年鄂、皖、蘇、冀四省電機(jī)工程學(xué)會(huì)汽輪機(jī)專業(yè)學(xué)術(shù)研討會(huì)論文集(湖北卷)[C];2007年
8 黃劍龍;于文召;王忠鋒;李力剛;朱珍;;基于無線網(wǎng)絡(luò)的母線測溫系統(tǒng)[A];2010中國儀器儀表學(xué)術(shù)、產(chǎn)業(yè)大會(huì)(論文集1)[C];2010年
9 孫偉民;張楊;相艷榮;劉強(qiáng);苑立波;;摻釹光纖測溫系統(tǒng)[A];大珩先生九十華誕文集暨中國光學(xué)學(xué)會(huì)2004年學(xué)術(shù)大會(huì)論文集[C];2004年
10 周萍;;淺議工業(yè)爐溫測量系統(tǒng)的計(jì)量測試[A];江蘇計(jì)量測試學(xué)術(shù)論文集(2009)[C];2009年
相關(guān)重要報(bào)紙文章 前4條
1 記者龔達(dá)發(fā);紅外熱成像測溫系統(tǒng)通過鑒定[N];人民日報(bào);2003年
2 馬真慶;多路智能測溫系統(tǒng)面市[N];中國信息報(bào);2000年
3 暴青雨 奚啟新;遠(yuǎn)距離人體測溫系統(tǒng)[N];新華每日電訊;2003年
4 記者 汪永安;“金星”小產(chǎn)品闖出大市場[N];安徽日報(bào);2006年
相關(guān)博士學(xué)位論文 前1條
1 楊臧健;譜色測溫系統(tǒng)的設(shè)計(jì)研究[D];中國科學(xué)技術(shù)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 唐菲;無線多點(diǎn)測溫系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];南京理工大學(xué);2014年
2 張?jiān)讫?輸電線T接點(diǎn)遠(yuǎn)程測溫系統(tǒng)的設(shè)計(jì)與開發(fā)[D];河北工業(yè)大學(xué);2015年
3 石霄;長距離大面積農(nóng)田土壤測溫系統(tǒng)的研究[D];吉林農(nóng)業(yè)大學(xué);2015年
4 朱海鵬;基于拉曼散射效應(yīng)的分布式光纖測溫系統(tǒng)研究[D];重慶大學(xué);2015年
5 周慧燁;復(fù)雜溫度場中聲學(xué)測溫系統(tǒng)的研究[D];東南大學(xué);2015年
6 王麗潔;基于粒子群算法的超聲測溫系統(tǒng)研究[D];重慶大學(xué);2016年
7 孫俊峰;多點(diǎn)智能測溫系統(tǒng)研究[D];吉林大學(xué);2013年
8 趙剛;分布式遠(yuǎn)程巡回測溫系統(tǒng)的實(shí)現(xiàn)[D];廈門大學(xué);2001年
9 朱麗葉;基于嵌入式Web服務(wù)器的無線遠(yuǎn)程測溫系統(tǒng)研究[D];西安工業(yè)大學(xué);2012年
10 張達(dá)偉;光纖測溫系統(tǒng)信號(hào)處理方法的研究與實(shí)現(xiàn)[D];大連理工大學(xué);2008年
,本文編號(hào):2183178
本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/2183178.html