天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 管理論文 > 工程管理論文 >

盾構(gòu)機刀盤驅(qū)動液壓馬達故障診斷研究

發(fā)布時間:2018-04-08 17:02

  本文選題:盾構(gòu)機 切入點:BP神經(jīng)網(wǎng)絡(luò) 出處:《廣東工業(yè)大學》2017年碩士論文


【摘要】:隨著人工智能技術(shù)和信息技術(shù)在機械工業(yè)中的發(fā)展,機械故障診斷技術(shù)也朝著智能化的方向發(fā)展。盾構(gòu)機刀盤直徑大、工作環(huán)境惡劣和受力復(fù)雜,并且盾構(gòu)刀盤驅(qū)動液壓馬達數(shù)量有8個,分布范圍大。液壓馬達發(fā)生故障將直接導(dǎo)致盾構(gòu)機無法正常工作,甚至引發(fā)事故。利用傳統(tǒng)的依賴于維修者個人經(jīng)驗的手工或半自動的故障診斷方式對液壓馬達進行故障診斷,工作效率低、準確度不高,本文開展的盾構(gòu)機刀盤驅(qū)動液壓馬達智能診斷系統(tǒng)的研究工作是要開發(fā)出效率更高,更智能的故障診斷的方式,因此對大型機械設(shè)備的維護具有重要意義。本文針對盾構(gòu)機刀盤驅(qū)動液壓馬達的故障診斷,研究了基于BP神經(jīng)網(wǎng)絡(luò)和專家系統(tǒng)診斷方法的液壓馬達故障診斷系統(tǒng)。首先,研究了盾構(gòu)機刀盤驅(qū)動液壓馬達的故障產(chǎn)生機理和故障發(fā)生規(guī)律,為液壓馬達故障診斷系統(tǒng)積累了專家知識。其次,研究了液壓馬達故障的模式識別,故障特征信號的選取及故障特征監(jiān)測參數(shù),確定了故障信號監(jiān)測的位置、信號獲取過程和信號的標度變換過程。分析了濾波方法在故障信號預(yù)處理中的應(yīng)用,研究了故障特征提取的時域分析法和頻域分析法。再次,研究了BP神經(jīng)網(wǎng)絡(luò)和專家系統(tǒng)結(jié)合的故障診斷方法,分析了人工神經(jīng)網(wǎng)絡(luò)的拓撲結(jié)構(gòu)和BP神經(jīng)網(wǎng)絡(luò)的算法流程,同時研究了專家系統(tǒng)的結(jié)構(gòu),深入研究了專家系統(tǒng)知識庫的知識表示和專家系統(tǒng)的知識獲取模型以及液壓馬達故障知識庫結(jié)構(gòu)。在此基礎(chǔ)上,研究了神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)的結(jié)構(gòu)及其盾構(gòu)機刀盤驅(qū)動液壓馬達故障診斷模型,并深入的研究了神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)的推理機制和解釋機制。最后,研究盾構(gòu)機刀盤驅(qū)動液壓馬達故障診斷系統(tǒng)的開發(fā)流程,同時構(gòu)建了故障診斷系統(tǒng)的硬件系統(tǒng),并選取了硬件設(shè)備搭建數(shù)據(jù)采集、數(shù)據(jù)處理和數(shù)據(jù)通信的硬件平臺。在此基礎(chǔ)上,利用模塊化思想設(shè)計盾構(gòu)機刀盤驅(qū)動液壓馬達故障診斷系統(tǒng)軟件總體結(jié)構(gòu),然后采用C++語言編寫各模塊程序源代碼,并在Visual Studio 2005軟件中建立了盾構(gòu)機刀盤驅(qū)動液壓馬達故障診斷系統(tǒng)軟件中各模塊的應(yīng)用程序,包括液壓馬達故障診斷系統(tǒng)登錄界面、狀態(tài)監(jiān)測與故障診斷功能、故障報警與診斷功能、BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練設(shè)計、知識庫管理等。通過本文的研究,所得研究結(jié)果對大型設(shè)備液壓馬達的故障診斷和維護具有指導(dǎo)作用,同時可以作為液壓系統(tǒng)關(guān)鍵零部件的故障監(jiān)測診斷研究的借鑒和參考。
[Abstract]:With the development of artificial intelligence and information technology in mechanical industry, mechanical fault diagnosis technology is also developing intelligently.The shield machine has large diameter of cutter head, bad working environment and complex force, and there are 8 hydraulic motors driven by cutter head of shield machine, which have a wide distribution range.Hydraulic motor failure will directly lead to shield machine can not work properly, or even cause an accident.The traditional manual or semi-automatic fault diagnosis method, which depends on the personal experience of the maintainer, is used to diagnose the fault of the hydraulic motor.The research work of the intelligent diagnosis system for hydraulic motor driven by cutter head of shield machine in this paper is to develop a more efficient and intelligent way of fault diagnosis, so it is of great significance for the maintenance of large mechanical equipment.In this paper, the fault diagnosis system of hydraulic motor driven by shield machine is studied based on BP neural network and expert system diagnosis method.Firstly, the mechanism of fault generation and the rule of fault occurrence of hydraulic motor driven by cutter head of shield machine are studied, and the expert knowledge is accumulated for the fault diagnosis system of hydraulic motor.Secondly, the fault pattern recognition of hydraulic motor, the selection of fault feature signal and the parameters of fault feature monitoring are studied, and the location of fault signal monitoring, signal acquisition process and signal scale transformation process are determined.The application of filtering method in fault signal preprocessing is analyzed. The time domain analysis method and frequency domain analysis method for fault feature extraction are studied.Thirdly, the fault diagnosis method combining BP neural network and expert system is studied, the topology structure of artificial neural network and the algorithm flow of BP neural network are analyzed, and the structure of expert system is also studied.The knowledge representation of expert system knowledge base, the knowledge acquisition model of expert system and the structure of hydraulic motor fault knowledge base are studied.On this basis, the structure of neural network expert system and the fault diagnosis model of hydraulic motor driven by cutter head of shield machine are studied, and the reasoning mechanism and explanation mechanism of neural network expert system are studied deeply.Finally, the development process of the hydraulic motor fault diagnosis system driven by the cutter head of shield machine is studied. At the same time, the hardware system of the fault diagnosis system is constructed, and the hardware platform of data acquisition, data processing and data communication is built.On this basis, the software structure of hydraulic motor fault diagnosis system driven by cutter head of shield machine is designed by using modularization thought, and the source code of each module program is compiled by C language.In the software of Visual Studio 2005, the application program of each module in the software of hydraulic motor fault diagnosis system driven by cutter head of shield machine is established, including the login interface of hydraulic motor fault diagnosis system, the function of condition monitoring and fault diagnosis.The function of fault alarm and diagnosis is BP neural network training design, knowledge base management and so on.Through the research in this paper, the results can be used as a guide for the fault diagnosis and maintenance of the hydraulic motor of large equipment, and it can also be used as a reference for the fault monitoring and diagnosis of the key parts of the hydraulic system.
【學位授予單位】:廣東工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:U455.39;TH137.51

【參考文獻】

相關(guān)期刊論文 前10條

1 花巖;;盾構(gòu)機關(guān)鍵設(shè)備狀態(tài)監(jiān)測與故障診斷研究[J];山東工業(yè)技術(shù);2016年18期

2 王金福;李富才;;機械故障診斷的信號處理方法:頻域分析[J];噪聲與振動控制;2013年01期

3 賴素建;靳曉雄;彭為;何劍峰;;信號預(yù)處理中錯點剔除方法的研究[J];佳木斯大學學報(自然科學版);2011年03期

4 劉宏志;;TBM及盾構(gòu)機設(shè)備狀態(tài)監(jiān)測與故障診斷實用技術(shù)綜述[J];隧道建設(shè);2007年06期

5 周汝勝;焦宗夏;王少萍;;液壓系統(tǒng)故障診斷技術(shù)的研究現(xiàn)狀與發(fā)展趨勢[J];機械工程學報;2006年09期

6 崔國華;王國強;何恩光;張英爽;;盾構(gòu)機的研究現(xiàn)狀及發(fā)展前景[J];礦山機械;2006年06期

7 吳凡;;狀態(tài)監(jiān)測和故障診斷技術(shù)的現(xiàn)狀與展望[J];國外電子測量技術(shù);2006年03期

8 胡燕平;黃之初;毛征宇;;液壓系統(tǒng)的智能故障診斷技術(shù)的研究現(xiàn)狀與發(fā)展[J];機床與液壓;2005年11期

9 陸春月,王俊元;機械故障診斷的現(xiàn)狀與發(fā)展趨勢[J];機械管理開發(fā);2004年06期

10 王少萍,苑中魁,楊光琴;基于小波消噪的液壓泵故障診斷[J];中國機械工程;2004年13期

相關(guān)博士學位論文 前1條

1 談理;基于MAS的盾構(gòu)機故障診斷知識引擎系統(tǒng)的研究[D];上海大學;2008年

相關(guān)碩士學位論文 前10條

1 白慧芳;基于解析模型的液壓調(diào)平系統(tǒng)的故障診斷[D];中北大學;2015年

2 郭建章;盾構(gòu)機液壓系統(tǒng)原位檢測技術(shù)研究[D];石家莊鐵道大學;2015年

3 付耀琨;基于小波神經(jīng)網(wǎng)絡(luò)技術(shù)在盾構(gòu)機故障診斷中的應(yīng)用研究[D];鄭州大學;2014年

4 劉維;盾構(gòu)機推進系統(tǒng)故障預(yù)測研究[D];南京理工大學;2014年

5 左慶林;盾構(gòu)機關(guān)鍵設(shè)備狀態(tài)監(jiān)測與故障診斷研究[D];石家莊鐵道大學;2014年

6 鄧麗君;基于多傳感器信息融合的液壓系統(tǒng)故障診斷方法研究[D];太原科技大學;2013年

7 張洪瑾;基于模糊神經(jīng)網(wǎng)絡(luò)的掘進機液壓系統(tǒng)故障診斷研究[D];南京理工大學;2013年

8 鄒燁;全斷面掘進機狀態(tài)監(jiān)測管理系統(tǒng)研究[D];東北大學;2012年

9 李雪冬;基于粗糙集神經(jīng)網(wǎng)絡(luò)液壓機故障診斷專家系統(tǒng)的研究開發(fā)[D];合肥工業(yè)大學;2012年

10 韓超;數(shù)據(jù)挖掘在盾構(gòu)機故障診斷中的應(yīng)用研究[D];沈陽理工大學;2011年

,

本文編號:1722521

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/1722521.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶84256***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com