基于土壤源熱泵的太陽(yáng)能跨季節(jié)蓄能的理論研究與實(shí)踐
本文關(guān)鍵詞: 土壤源熱泵系統(tǒng) 太陽(yáng)能跨季節(jié)蓄能 地埋管傳熱模型 TRNSYS模擬 出處:《天津大學(xué)》2014年博士論文 論文類(lèi)型:學(xué)位論文
【摘要】:利用土壤源熱泵進(jìn)行太陽(yáng)能跨季節(jié)蓄能可以有效地解決土壤源熱泵系統(tǒng)土壤熱失衡的問(wèn)題。對(duì)于寒冷和嚴(yán)寒等熱負(fù)荷占優(yōu)的建筑氣候區(qū),本文針對(duì)基于土壤源熱泵的太陽(yáng)能跨季節(jié)蓄能機(jī)理、跨季節(jié)蓄能實(shí)踐的可行性、蓄熱系統(tǒng)的設(shè)計(jì)、蓄熱周期的預(yù)測(cè)、蓄熱過(guò)程的TRNSYS模擬分析、蓄熱系統(tǒng)的匹配運(yùn)行測(cè)量調(diào)試等問(wèn)題開(kāi)展系列研究。以一個(gè)實(shí)際工程為支撐,開(kāi)展了跨季節(jié)蓄能的實(shí)踐。首先,分析利用土壤源進(jìn)行太陽(yáng)能跨季節(jié)蓄能的可行性。建立雙U型地埋管傳熱的物理模型和數(shù)學(xué)模型,利用Matlab軟件對(duì)理論模型進(jìn)行求解計(jì)算,得到土壤溫度分布曲線和擬合方程,通過(guò)溫度分布法計(jì)算得到地埋管換熱器傳熱量。結(jié)果表明,地埋管換熱器的換熱量能夠滿足蓄熱量的要求。其次,根據(jù)天津工業(yè)大學(xué)新校區(qū)A區(qū)設(shè)備站2010年、2011年和2012年土壤源熱泵系統(tǒng)的運(yùn)行能源賬單和天津地區(qū)典型氣象年的太陽(yáng)能輻射數(shù)據(jù),同時(shí)考慮太陽(yáng)能利用率、極端天氣、管路熱量損失等因素,預(yù)測(cè)蓄熱實(shí)驗(yàn)周期,設(shè)計(jì)蓄熱實(shí)驗(yàn)系統(tǒng)并進(jìn)行蓄熱實(shí)驗(yàn)。蓄熱實(shí)驗(yàn)分別測(cè)量了實(shí)驗(yàn)周期內(nèi)的太陽(yáng)能輻射強(qiáng)度、集熱水箱供回水溫度及流量、地埋管附近各層土壤實(shí)時(shí)溫度,通過(guò)計(jì)算分別得到蓄熱期內(nèi)的太陽(yáng)能輻射量、地埋管蓄熱量和土壤溫升等數(shù)據(jù),利用太陽(yáng)能利用率和延遲響應(yīng)的概念分析了輻射量和蓄熱量之間關(guān)系。實(shí)驗(yàn)中,總輻射量為956991.3MJ,總蓄熱量為480299.1MJ,總蓄熱量是地埋管年均取熱量的2.03倍,總蓄熱量占總輻射量的50.2%,太陽(yáng)能平均利用率為50.2%。再次,利用TRNSYS模擬軟件解決了過(guò)渡季節(jié)的跨季節(jié)蓄能難題。建立仿真模型,并利用實(shí)驗(yàn)數(shù)據(jù)對(duì)該模型進(jìn)行驗(yàn)證,提出相關(guān)的誤差修正模型,用來(lái)消除氣象參數(shù)和設(shè)備耗散熱對(duì)模擬結(jié)果的影響。過(guò)渡季節(jié)的蓄熱過(guò)程模擬結(jié)果表明,盡管在過(guò)渡季節(jié),其儲(chǔ)熱量(247719.47k Wh)同樣能夠滿足蓄熱量的要求。最后,從土壤溫度、蒸發(fā)器進(jìn)水溫度、系統(tǒng)和機(jī)組COP及經(jīng)濟(jì)環(huán)境性四個(gè)方面對(duì)蓄熱效果進(jìn)行了評(píng)價(jià)。根據(jù)2010年、2011年,2012年冬季土壤源熱泵的能源賬單,計(jì)算得到系統(tǒng)和機(jī)組的COP值,結(jié)果表明:在沒(méi)有蓄熱模式的情況下,土壤源熱泵系統(tǒng)和機(jī)組的COP值是逐年下降的;進(jìn)行蓄熱實(shí)驗(yàn)后,系統(tǒng)和機(jī)組的COP有小幅度的提升,分別提升3.4%和2.4%。
[Abstract]:The use of ground-source heat pump for cross-seasonal solar energy storage can effectively solve the problem of soil heat imbalance in ground-source heat pump system. In this paper, the mechanism of cross-seasonal solar energy storage based on ground-source heat pump, the feasibility of cross-season energy storage practice, the design of heat storage system, the prediction of heat storage cycle, and the TRNSYS simulation analysis of heat storage process are discussed. A series of research is carried out on the matching operation, measurement and debugging of heat storage system. Based on a practical project, the practice of cross-season energy storage is carried out. First of all. The feasibility of using soil source to store solar energy across seasons is analyzed. The physical and mathematical models of heat transfer of double-U buried pipes are established, and the theoretical model is solved by Matlab software. The soil temperature distribution curve and fitting equation are obtained, and the heat transfer quantity of the underground tube heat exchanger is calculated by the temperature distribution method. The results show that the heat transfer of the ground buried tube heat exchanger can meet the requirement of heat storage. According to the operating energy bill of the ground-source heat pump system on 2010, 2011 and 2012, and the solar radiation data of the typical meteorological year in Tianjin area, the equipment station in area A of the new campus of Tianjin University of Technology is used. At the same time, solar energy utilization, extreme weather, pipe heat loss and other factors are taken into account to predict the experimental cycle of heat storage. The thermal storage experiment system was designed and heat storage experiment was carried out. The solar radiation intensity, the temperature and flow rate of the collecting water tank and the real time temperature of each layer of soil near the buried pipe were measured respectively. The data of solar radiation, buried pipe heat storage and soil temperature rise during the storage period were calculated, and the relationship between solar radiation and heat storage was analyzed by using the concepts of solar energy utilization ratio and delayed response. The total amount of radiation is 956991.3 MJ, the total heat storage is 480299.1 MJ, the total heat storage is 2.03 times of the average annual heat of buried pipe, and the total heat storage is 50.2% of the total radiation. The average utilization rate of solar energy is 50.2. Thirdly, the TRNSYS simulation software is used to solve the problem of inter-seasonal energy storage in the transition season. The simulation model is established, and the experimental data are used to verify the model. A related error correction model is proposed to eliminate the influence of meteorological parameters and equipment heat dissipation on the simulation results. Its heat storage can also meet the requirements of heat storage. Finally, from the soil temperature, evaporator inlet temperature. The heat storage effect was evaluated from four aspects of system and unit COP and economic environment. According to the energy bill of ground-source heat pump in the winter of 2010 2011 2012. The COP value of the system and the unit is calculated. The results show that the COP value of the GSHP system and the unit decreases year by year without the heat storage mode. After the heat storage experiment, the COP of the system and the unit were raised by 3.4% and 2.4, respectively.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TU83;TU17
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱巖,楊歷,李中領(lǐng);土壤源熱泵冬夏季應(yīng)用的可行性分析[J];潔凈與空調(diào)技術(shù);2004年04期
2 何崇智;張瑞權(quán);劉世超;王卓胤;;土壤源熱泵特性分析及其在天津地區(qū)的應(yīng)用[J];煤氣與熱力;2007年04期
3 盧繼龍;彭建國(guó);楊光;;土壤源熱泵的研究與現(xiàn)狀[J];制冷與空調(diào)(四川);2007年03期
4 張金生;;淺析土壤源熱泵的優(yōu)勢(shì)與應(yīng)用[J];天津科技;2008年06期
5 王春艷;樊荔;;土壤源熱泵空調(diào)末端系統(tǒng)的分析[J];成都紡織高等專(zhuān)科學(xué)校學(xué)報(bào);2009年01期
6 彭莉;;土壤源熱泵技術(shù)推廣可行性分析[J];科技創(chuàng)新導(dǎo)報(bào);2009年33期
7 于偉強(qiáng);康景文;李國(guó)祥;李帥;;土壤源熱泵技術(shù)發(fā)展與應(yīng)用綜述[J];四川建筑科學(xué)研究;2009年06期
8 甄勃;焦迎新;;長(zhǎng)春地區(qū)土壤源熱泵的節(jié)能與經(jīng)濟(jì)技術(shù)性分析[J];吉林建筑工程學(xué)院學(xué)報(bào);2011年06期
9 王存艷;侯家濤;郭宏賓;;土壤源熱泵在天津某別墅項(xiàng)目的應(yīng)用及其經(jīng)濟(jì)分析[J];制冷;2012年01期
10 孫建華;;住宅土壤源熱泵應(yīng)用研究[J];科技資訊;2012年26期
相關(guān)會(huì)議論文 前10條
1 康景文;李國(guó)祥;;成都地區(qū)土壤源熱泵發(fā)展與應(yīng)用綜述[A];第三屆全國(guó)巖土與工程學(xué)術(shù)大會(huì)論文集[C];2009年
2 李家偉;廉樂(lè)明;于立強(qiáng);;土壤源熱泵的國(guó)內(nèi)外發(fā)展歷史與現(xiàn)狀[A];全國(guó)暖通空調(diào)制冷1996年學(xué)術(shù)年會(huì)資料集[C];1996年
3 隋學(xué)敏;張旭;官燕玲;;我國(guó)土壤源熱泵的研究現(xiàn)狀及應(yīng)用前景[A];地溫資源與地源熱泵技術(shù)應(yīng)用論文集(第二集)[C];2008年
4 孟桃;;土壤源熱泵評(píng)價(jià)軟件編制及北方地區(qū)適宜性研究[A];全國(guó)暖通空調(diào)制冷2010年學(xué)術(shù)年會(huì)論文集[C];2010年
5 肖龍;朱清宇;徐偉;;系統(tǒng)化的土壤源熱泵設(shè)計(jì)方法[A];全國(guó)暖通空調(diào)制冷2010年學(xué)術(shù)年會(huì)學(xué)術(shù)文集[C];2010年
6 肖峰;高建嶺;劉建龍;;土壤源熱泵的熱力學(xué)性能分析[A];北京力學(xué)會(huì)第13屆學(xué)術(shù)年會(huì)論文集[C];2007年
7 李延菲;張子平;李瓊;;土壤源熱泵與間歇性負(fù)荷耦合的特性分析[A];制冷空調(diào)新技術(shù)進(jìn)展——第三屆制冷空調(diào)新技術(shù)研討會(huì)論文集[C];2005年
8 徐亞娟;革非;;土壤源熱泵的研究與應(yīng)用[A];2005西南地區(qū)暖通空調(diào)熱能動(dòng)力年會(huì)論文集[C];2005年
9 惲超;;土壤源熱泵的研究進(jìn)展與工程應(yīng)用[A];全國(guó)暖通空調(diào)制冷2006學(xué)術(shù)年會(huì)資料集[C];2006年
10 呂巨功;;土壤源熱泵在建筑中的應(yīng)用[A];可再生能源開(kāi)發(fā)利用研討會(huì)論文集[C];2008年
相關(guān)重要報(bào)紙文章 前10條
1 顧猛;專(zhuān)家共商土壤源熱泵行業(yè)發(fā)展大計(jì)[N];中國(guó)建設(shè)報(bào);2009年
2 通訊員 徐維宏 記者 李耀華;土壤源熱泵助海關(guān)樓冷暖自如[N];連云港日?qǐng)?bào);2011年
3 本報(bào)記者 李靜華;優(yōu)化設(shè)計(jì)促土壤源熱泵更節(jié)能[N];中國(guó)房地產(chǎn)報(bào);2010年
4 魏占學(xué) 王建忠 張莉 趙s,
本文編號(hào):1488569
本文鏈接:http://www.sikaile.net/guanlilunwen/chengjian/1488569.html