重慶市本地產(chǎn)大米中鎘污染調(diào)查及健康風險評價
本文選題:鎘 + 大米; 參考:《重慶醫(yī)科大學》2015年碩士論文
【摘要】:目的:經(jīng)濟的快速發(fā)展造成各種自然因素和人為因素導致的重金屬污染愈加嚴重。鎘是有毒非必需重金屬元素之一,尤其是對某些遭受到鎘暴露的環(huán)境或工作中的人群,危害更加嚴重。土壤中的鎘會蓄積在農(nóng)作物中,并且通過食物鏈對人類健康造成嚴重威脅。鎘由于自身的特性,易于蓄積在大米中。各地鎘污染事件已經(jīng)引起了全球廣泛關注。大米是重慶市當?shù)鼐用裰饕澄?所以大米成為當?shù)鼐用耧嬍虫k暴露的主要來源。本文檢測重慶市本地產(chǎn)大米中鎘含量,分析檢測數(shù)據(jù),了解重慶市本地產(chǎn)大米鎘含量水平,并對重慶市居民來自大米的鎘膳食暴露所帶來的健康風險進行評價,提出控制食品中鎘含量的措施,為當?shù)厥称钒踩O(jiān)管提供科學依據(jù)。方法:重慶市按行政區(qū)域劃分為四個地區(qū)(主城區(qū)、“一圈”內(nèi)其它區(qū)縣、渝東北、渝東南),從2013年11月到2014年5月間對重慶市所有產(chǎn)大米區(qū)縣進行隨機抽樣,每月各地區(qū)抽樣數(shù)量為:主城區(qū)(1個)、“一圈”內(nèi)其它區(qū)縣(2個)、渝東北(2個)、渝東南(1個),七個月來所抽查大米樣品覆蓋全市34個區(qū)縣,將所抽查區(qū)縣的大米加工廠全部納入,每個加工廠每次抽取時按照國家規(guī)范抽取當?shù)厮a(chǎn)大米4份。采集的大米樣品按照國家標準GB/T5009-2003將樣品進行前處理、微波消解儀進行樣品消解,使用石墨爐原子吸收光譜儀,采用石墨爐原子吸收光譜法對重慶本地產(chǎn)大米鎘含量進行檢測,標準曲線和加標回收率均需要符合實驗要求,將大米鎘含量使用健康風險評估模型,對當?shù)夭煌貐^(qū)居民進行健康風險評估,這些檢測的最終結(jié)果進行數(shù)據(jù)處理,統(tǒng)計分析。結(jié)果:①共檢測大米樣品1020份,檢測值范圍為0.001~0.231 mg/kg,平均值0,025 mg/kg,處于較低水平,鎘含量超標數(shù)有7份,總合格率為99.31%;②鎘含量頻數(shù)分布表明鎘含量大多數(shù)處于0~0.040mg/kg區(qū)間內(nèi),此區(qū)間范圍內(nèi)樣品構(gòu)成比為88.04%,高于鎘含量限值(0.2mg/kg)樣品構(gòu)成比僅為0.69%,超標數(shù)較少,表明大多數(shù)樣品鎘含量處于較低范圍;③觀察不同區(qū)縣間大米鎘含量,各地區(qū)間鎘含量均值較低,平均值范圍為0.012 mg/kg~0.047mg/kg,潼南縣、彭水縣和大足區(qū)發(fā)現(xiàn)少數(shù)樣品有鎘超標情況,但超標率較低,其余31個區(qū)縣大米鎘含量均在規(guī)定限值內(nèi)。比較潼南縣、彭水縣和大足區(qū)大米鎘含量的平均數(shù)和中位數(shù),三地區(qū)中位數(shù)值均明顯低于平均值。不同區(qū)縣鎘含量差異有統(tǒng)計學意義(H=112.56,P0.01),不同區(qū)縣鎘超標率也存在差異(X 2=71.50,P0.01);④觀察不同區(qū)域問大米鎘含量,四區(qū)域間鎘含量有差異(H=22.60,P0.01),主城區(qū)和渝東北地區(qū)均無鎘超標情況,渝東南地區(qū)鎘超標率最高,與主城區(qū)和“一圈內(nèi)”其它區(qū)縣地區(qū)相比無差異(X 2=2.79、1.74,P0.05),高于渝東北地區(qū)(X 2=12.93,P0.01);⑤評估重慶市當?shù)鼐用翊竺祖k暴露健康風險,本地產(chǎn)大米鎘日攝入量(DI)遠遠小于允許限值72ug/(mg·天),出現(xiàn)了極少量大米樣品DI超標現(xiàn)象,但各區(qū)縣鎘平均值DI均在限值內(nèi)。本地產(chǎn)大米鎘目標危險系數(shù)(THQ)也遠遠小于允許限值1,也出現(xiàn)極少量大米樣品THQ超標現(xiàn)象,但各區(qū)縣鎘平均值的THQ也均在安全水平內(nèi)。結(jié)論:本次重慶市本地產(chǎn)大米鎘含量檢測合格率較高,總體鎘含量水平較低,鎘暴露風險低,當?shù)鼐用駚碓从诖竺椎逆k攝入水平處于安全范圍,大米鎘暴露對人體尚不能構(gòu)成威脅。各地區(qū)間的鎘含量水平有差異,原因可能是各區(qū)縣之間不同的土壤環(huán)境或者實驗人為因素造成,也可能是季節(jié)性原因和有限的樣本數(shù)量,所以只能代表當時抽樣時當?shù)厮a(chǎn)大米的鎘水平,具體原因還需進一步調(diào)查,建議以后開展各地區(qū)的農(nóng)田土壤檢測工作,從根源處了解當?shù)刂亟饘傥廴厩闆r。
[Abstract]:Objective: the rapid development of the economy causes the heavy metal pollution caused by various natural and human factors. Cadmium is one of the toxic and non essential heavy metals, especially for some people in the environment or work exposed to cadmium. The cadmium in the soil will be stored in the crops and through the food chain. Human health is a serious threat to human health. Cadmium is easily accumulated in rice because of its own characteristics. Cadmium pollution in various places has aroused widespread concern around the world. Rice is the main food of local residents in Chongqing, so rice has become the main source of cadmium exposure in local residents. This paper examined the content of cadmium in rice produced in Chongqing and analyzed the analysis of cadmium. Test data, understand the level of local rice and cadmium content in Chongqing, and evaluate the health risks of Chongqing residents from the cadmium dietary exposure from rice, put forward measures to control the content of cadmium in food, and provide scientific basis for the local food safety supervision. Method: Chongqing city is divided into four regions according to the Administrative Region (main city area, " A circle of other districts and counties, Northeast Chongqing, Southeast Chongqing, from November 2013 to May 2014, all rice districts and counties in Chongqing were randomly sampled, and the sample number in each region was: the main city area (1), "one circle" in other districts and counties (2), Northeast Chongqing (2), Southeast Chongqing (1), and seven months for the sampling of rice samples to cover 34 districts of the city. In the county, the rice processing plants in the district and county are all included, and each processing plant extracts 4 parts of the local rice according to the national standard each time. The samples are processed in accordance with the national standard GB/T5009-2003, the microwave digestion instrument is dissolved, the graphite furnace atomic absorption spectrometer is used, the graphite furnace atom is used. The CD content of rice produced in Chongqing was detected by absorption spectrometry. The standard curve and the recovery rate of the added standard need to meet the requirements of the experiment. The health risk assessment model of rice and cadmium was used to assess the health risk of the residents in different locals. The final results of these tests were processed and analyzed. Results: (1) the results were analyzed. 1020 samples of rice were measured, the detection range was 0.001 ~ 0.231 mg/kg, the average value was 0025 mg/kg, at a lower level, the cadmium content exceeded the standard number 7, the total qualified rate was 99.31%, and the cadmium content frequency distribution showed that the cadmium content was in the 0 ~ 0.040mg/kg interval, and the sample composition ratio within this range was 88.04%, higher than the cadmium content limit value (0.2mg /kg) the composition ratio is only 0.69%, and the number of super standard is less. It shows that the content of cadmium in most samples is in a lower range. (3) to observe the content of cadmium in different districts and counties, the mean value of cadmium in each region is low, the average range is 0.012 mg/kg to 0.047mg/kg, and a few samples in Tongnan County, Pengshui county and big foot area have been found to exceed the standard of cadmium, but the exceeding standard rate is more than the standard. Low, the contents of rice and cadmium in the other 31 counties were within the prescribed limits. The average and median of rice and cadmium content in Tongnan, Pengshui and Dazu regions were compared. The median values of the three regions were significantly lower than those of the average. The cadmium content in different districts and counties was statistically significant (H=112.56, P0.01), and the cadmium exceeding standard rates in different districts and counties were also different (X 2=71.50, P0.01). (4) to observe the content of rice and cadmium in different regions, the cadmium content in the four regions is different (H=22.60, P0.01), and there is no cadmium exceeding the standard in the main city and the northeast of Chongqing, and the super standard rate of cadmium in the southeast of Chongqing is the highest, and there is no difference (X 2 =2.79,1.74, P0.05) with the main city and the "one circle" area (P0.05), which is higher than that in the northeast of Chongqing (X 2=12.93, P0.01); 5 To assess the health risk of rice and cadmium exposure in Chongqing, the daily intake of rice and cadmium (DI) was far less than the allowable limit value 72ug/ (mg day), and a very small amount of rice samples had been exceeded by DI, but the average DI of cadmium in each district was within the limit. The local hazard coefficient (THQ) of the local rice and cadmium (THQ) was also far less than 1 of the allowable limit. A small amount of rice sample THQ exceeded the standard, but the average cadmium value of THQ in all districts and counties was also in the safe level. Conclusion: the local rice cadmium content detection rate is high, the total cadmium content level is low, the cadmium exposure risk is low, the local residents are in the safe range from the cadmium intake level of rice, and the rice and cadmium exposure are still on the human body. It can not constitute a threat. There is a difference in the level of cadmium in each region, which may be caused by different soil environment or artificial factors between the districts and counties. It may also be seasonal and limited samples. Therefore, it can only represent the level of cadmium in the local rice at the time of sampling. The specific reasons should be further investigated and suggested. We will carry out farmland soil testing work in various areas and understand the local heavy metal pollution from the source.
【學位授予單位】:重慶醫(yī)科大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:R155.5
【相似文獻】
相關期刊論文 前10條
1 井玉平;日本的大米加工技術[J];寧夏科技;1998年03期
2 吳功建;淺談大米加工廠的改造[J];西部糧油科技;2000年06期
3 楊國武;陳化大米的再加工[J];糧食科技與經(jīng)濟;2001年02期
4 沈一青;大米專用提升機的研制和應用[J];糧食與飼料工業(yè);2001年11期
5 陳榮生;大米加工工藝的發(fā)展動態(tài)[J];四川糧油科技;2001年01期
6 姜心祿;提高大米加工技術的研究刻不容緩[J];四川農(nóng)業(yè)科技;2001年09期
7 周忠義;話說改色、改味大米[J];中國標準化;2001年07期
8 白美清;當前我國大米加工業(yè)存在的問題及對策[J];中國稻米;2002年03期
9 梁寶華 ,于四海;大米加工形成大市場[J];農(nóng)村百事通;2003年01期
10 蔡祖光;大米加工過程中增碎的原因及其解決途徑[J];糧食加工;2005年04期
相關會議論文 前8條
1 唐大為;;維力米:創(chuàng)新的強化大米解決方案[A];第三屆中國營養(yǎng)產(chǎn)業(yè)高層論壇文集[C];2007年
2 孫曉紅;鄭家麟;;大米淘洗設備的研究與設計[A];'2000全國農(nóng)產(chǎn)品加工技術與裝備研討會論文集[C];2000年
3 ;大米保鮮劑[A];第三屆全國粳稻米產(chǎn)業(yè)大會專集[C];2008年
4 張萃明;;大米包裝儲藏品質(zhì)評價指標的研究[A];'2000全國農(nóng)產(chǎn)品加工技術與裝備研討會論文集[C];2000年
5 律永發(fā);;發(fā)展延邊大米產(chǎn)業(yè)的思考[A];第三屆全國粳稻米產(chǎn)業(yè)大會專集[C];2008年
6 張萃明;劉建偉;包清彬;;大米的薄膜袋裝儲藏形態(tài)研究[A];中國糧油學會第二屆學術年會論文選集(綜合卷)[C];2002年
7 吳孝槐;路勇;;利用實時熒光PCR方法檢測轉(zhuǎn)Bt基因大米[A];“科技創(chuàng)新與食品產(chǎn)業(yè)可持續(xù)發(fā)展”學術研討會暨2008年廣東省食品學會年會論文集[C];2008年
8 ;吉林德大有限公司精制大米加工廠招商項目[A];第三屆全國粳稻米產(chǎn)業(yè)大會專集[C];2008年
相關重要報紙文章 前10條
1 記者 姜道宏 趙陽;大米加工及綜合利用研討會在南京舉行[N];糧油市場報;2002年
2 通訊員 趙建虎;4800噸米全牌大米遠銷日本[N];昌吉日報;2006年
3 李小根 黃黎黎 朱雅萍;8700噸常州大米登陸大洋洲[N];常州日報;2007年
4 王澤翊 鐘湘志;俄羅斯全面暫停大米進口[N];國際商報;2007年
5 海云;大米產(chǎn)能過剩也發(fā)愁[N];光明日報;2006年
6 李小根 黃黎黎;常州8700噸大米登陸大洋洲[N];中國國門時報;2007年
7 賈敬陽 記者 劉京 劉領;綠地大米遠銷到香港[N];錦州日報;2006年
8 米佳;大米加工業(yè)產(chǎn)能過剩[N];中國現(xiàn)代企業(yè)報;2006年
9 宜農(nóng);“隆元大米”的中國名牌之路[N];宜興日報;2007年
10 灤南縣胡各莊鎮(zhèn)馬各莊 馮立城;灤南大米為何不再市場飄香[N];河北科技報;2007年
相關博士學位論文 前2條
1 萬鵬;大米品質(zhì)檢測系統(tǒng)研究[D];吉林大學;2009年
2 陳善峰;低溫擠壓加酶大米作啤酒輔料的試驗研究[D];河北農(nóng)業(yè)大學;2012年
相關碩士學位論文 前10條
1 王傳梁;基于近紅外漫反射光譜分析技術的大米加工精度檢測方法的研究[D];南京農(nóng)業(yè)大學;2007年
2 賈薇;大米肽體外抗氧化活性及應用研究[D];東北農(nóng)業(yè)大學;2008年
3 陳國銘;大米加工精度檢測方法的研究[D];南京農(nóng)業(yè)大學;2009年
4 夏建春;基于光譜分析的大米加工精度檢測方法實驗研究[D];南京農(nóng)業(yè)大學;2006年
5 萬鵬;大米陳化度快速檢測系統(tǒng)的研究與開發(fā)[D];吉林大學;2006年
6 陳瑋;大米氣調(diào)儲藏過程中脂質(zhì)的變化研究[D];天津科技大學;2007年
7 王麗;脂質(zhì)類大米保鮮劑的研究[D];河南工業(yè)大學;2013年
8 潘巨忠;大米儲藏保鮮技術研究[D];西北農(nóng)林科技大學;2004年
9 倫利芳;大米低溫儲藏后在不同環(huán)境條件下其品質(zhì)變化[D];河南工業(yè)大學;2013年
10 王春蓮;大米儲藏保鮮品質(zhì)變化研究[D];福建農(nóng)林大學;2014年
,本文編號:1804675
本文鏈接:http://www.sikaile.net/yixuelunwen/yufangyixuelunwen/1804675.html