索拉菲尼衍生物1118-20的抗腫瘤增殖和血管生成作用及機制研究
[Abstract]:Sorafenib (Sorafenib, Bay43-9006) is the first oral micromolecule multi-kinase inhibitor, which is widely used in patients with advanced renal cell carcinoma and non-resectable liver cancer. In addition, the invention also has a good clinical advantage in the treatment of cancer types such as breast cancer, leukemia, thyroid cancer and the like. So far, Solani is recommended for the treatment of first-line drugs for advanced liver cancer, second-line treatment for advanced renal cell carcinoma and other advanced or metastatic thyroid cancer. so as to block the proliferation of tumor cells along the Raf/ MEK/ ERK pathway and, on the other hand, by inhibiting certain receptor tyrosine kinases (PDGFR-1, EGFR, VEGF, VEGFR, Flt-3, c-Kit, etc.), on the one hand, by direct targeting of a serine/ threonine (Raf-1, B-Raf V600E, a-type B-Raf and C-Raf); on the other hand, by inhibiting certain receptor tyrosine kinases (PDGFR-1, EGFR, VEGF, VEGFR, Flt-3, c-Kit, etc.), Inhibiting the formation of blood vessels of the vascular endothelial cells of the solid tumor, blocking the blood nutrient supply of the tumor, and indirectly inhibiting the growth of the tumor. However, in the clinical treatment, the adverse reaction caused by the treatment of the sorafenib cannot be ignored, so that the treatment is forced to be interrupted or the dose is reduced. Common adverse reactions include neutropenia, hypertension, liver function abnormality, renal function injury, etc., which may affect the quality of life of the patient. At the same time, Solani is a foreign patent protection drug, which is expensive in China and increases the cost of Chinese patients for cancer treatment. Therefore, the development of a multi-kinase inhibitor with high anti-tumor activity and low toxicity in the solani derivative is in urgent need. In view of the better clinical advantage of Sorafenib in the treatment of cancer and the adverse reactions that have occurred in clinical treatment, Professor Li Wenbao's laboratory has synthesized a series of solani derivatives on the basis of the structure of Sorafini. The inhibitory effect of 17 compounds on the proliferation of five tumor cells was evaluated by MTT assay in the initial compound activity screening experiment. As a reference to the inhibition and IC50 values, we screened six compounds (1118-20,1124-21,1124-15,1125-67,1125-4,1118-41) with the potential to study and have a strong inhibitory effect on the proliferation of 5 tumor cells. The inhibitory activity of 1118-20 on the above-mentioned five tumor cells was particularly obvious, and 1118-20 was selected as the research object to study the effect and mechanism of inhibiting the proliferation of human liver cancer cells HepG2. The results of MTT and clone formation showed that 1118-20 was more effective in inhibiting the proliferation of HepG2 cells than sorafenib, but the inhibitory effect of 1118-20 on human normal liver cells HL-7702 was weak and no significant difference with sorafenib. The statistical analysis also found that the cytotoxic effect of 1118-20 on HepG2 cells was stronger than that of human normal liver cells HL-7702. The cell cycle results were detected by flow cytometry, and the HepG2 cells were blocked in the S phase at 1118-20. Hoechst 33258 staining showed that 1118-20 could induce the nuclear concentration, division, and marginalization of HepG2 cells. The Annexin-V/ PI double-staining method found that 1118-20 could significantly increase the number of cell apoptosis. The western blotting assay found that 1118-20 could increase the level of clear PARP expression in clear caspase-9, clear caspase-3 and its substrate. The results of JC-1 staining and western blotting showed that the mitochondrial membrane potential decreased, the down-regulation of the Mcl-1 protein and the increase of the ratio of Bax/ Bcl-2, indicating that the Bcl-2 family-mediated mitochondrial apoptosis pathway was activated. Further analysis showed that 1118-20 had an effect on the proliferation signal Wnt/ P-cata conduction pathway, the EGFR/ PI3K/ Akt conduction pathway, the Ras/ ERK conduction pathway, and the p53 protein in HepG2 cells. The results show that 1118-20 not only upregulates the expression of the tumor suppressor protein p53, but also can inhibit the conduction of the proliferation signal, thereby blocking the proliferation of the tumor cells. The formation of a tumor vessel is necessary in the event of proliferation or metastasis or even further deterioration of the tumor cells. Without tumor blood vessels, the tumor cells can not obtain enough nutrients and oxygen, and the useless metabolites can not be discharged out, and the deterioration and metastasis of the tumor can be greatly limited. The MTT assay showed that 1118-20 significantly inhibited the proliferation of HUVEC in human umbilical vein endothelial cells, and the inhibitory effect was stronger. The scratch test shows that 1118-20 can reduce the migration ability of HUVECs; Western blotting results show that 1118-20 can downregulate the expression of active-MMP-2, active-MMP-9; in vitro tube formation experiments show that 1118-20 can inhibit the aggregation of vascular endothelial cells to form a vessel-like structure; and it has been found that 1118-20 significantly reduces angiogenesis-related proteins (FGF-2, VEGF, VEGFR-2, The expression of EGFR can inhibit the phosphorylation of VEGFR-2 and EGFR, thereby reducing the molecular basis for forming blood vessels. In conclusion,1118-20 is a new compound that has an anti-tumor activity that is superior to that of Solani and has a lower toxicity. In the liver cancer cell,1118-20 not only activates the Bcl-2 family-mediated mitochondrial apoptosis pathway, but also regulates the Wnt/ P-catenin pathway, the EGFR/ PI3K/ Akt pathway, and the Ras/ ERK pathway inhibits the conduction of the proliferation signal. These data suggest that 1118-20 may be a potential drug for cancer treatment and has a strong potential for development.
【學位授予單位】:山東大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:R96
【相似文獻】
相關期刊論文 前10條
1 丁志山,沃興德;細胞調亡與動脈粥樣硬化[J];中國動脈硬化雜志;1998年01期
2 李妍;紀朋艷;張巍;彭順利;呂士杰;;柴胡皂苷d對SH-SY5Y細胞ERK蛋白表達及凋亡的影響[J];中國醫(yī)科大學學報;2013年12期
3 嚴銀芳,陳曉,楊小清,閆遠芳;流行性腮腺炎病毒減毒株S_(79)在幾株腫瘤細胞和正常細胞中增殖的比較研究[J];腫瘤;2003年06期
4 劉功讓;管培中;宋淑亮;逯素梅;馮玉新;辛華;;絞股藍多糖對四氯化碳損傷HepG2細胞的保護作用[J];山東醫(yī)藥;2007年31期
5 肖東杰,汪運山;B細胞被動凋亡的研究進展[J];國外醫(yī)學(臨床生物化學與檢驗學分冊);1998年05期
6 張運濤,劉凡,姜茹,谷仲平,汪涌,張順,劉榮福,李玉梅;外源性p27與GRC-1細胞端粒酶活性及細胞凋亡關系的實驗研究[J];中國現(xiàn)代醫(yī)學雜志;2002年09期
7 石和元;王平;胡永年;邱幸凡;田代志;;溫膽湯改良方對Aβ_(25-35)誘導AD細胞模型bcl-2、bax蛋白表達的影響[J];世界科學技術;2005年06期
8 孟威宏;王強;王虹蛟;顏煒群;;牛胰蛋白酶抑制劑研究進展[J];國外醫(yī)學(老年醫(yī)學分冊);2008年04期
9 鐘民濤;王曉麗;李星云;劉磊;劉穎麗;張偉;黃敏;;香菇C91-3菌絲發(fā)酵蛋白對H22腫瘤細胞體內外抗腫瘤機制的初探[J];中國微生態(tài)學雜志;2011年09期
10 張晨,黃世林,馬東初,孫英慧,馬小鋒;硫化砷誘導NB_4細胞調亡[J];白血病;2000年06期
相關會議論文 前10條
1 鄒萍;;血液系統(tǒng)惡性腫瘤細胞來源膜微粒的特征及生物學作用研究[A];第13屆全國實驗血液學會議論文摘要[C];2011年
2 蔣爭凡;卞婕;翟中和;;非細胞體系誘導小鼠肝細胞核凋亡的超微觀察[A];第十次全國電子顯微學會議論文集(Ⅰ)[C];1998年
3 陳衛(wèi)銀;祝彼得;劉福友;馮雪梅;;參芎滴丸對急性腦梗死模型大鼠神經細胞調亡的影響[A];中華醫(yī)學會第十三次全國神經病學學術會議論文匯編[C];2010年
4 謝晶日;李威;梁國英;楊豐源;;胃靈顆粒對胃癌前病變細胞調亡基因影響的實驗研究[A];中華中醫(yī)藥學會脾胃病分會第十八次學術交流會論文匯編[C];2006年
5 綦淑芬;萬瑞香;姚如勇;;扇貝多肽對Hela細胞在紫外線損傷下的保護作用[A];第五屆全國自由基生物學與自由基醫(yī)學學術討論會論文摘要匯編[C];2000年
6 吳李君;裴蓓;王順昌;王軍;湯明禮;;砷和鎘暴露誘導秀麗小桿線蟲生殖腺細胞調亡及其信號通路研究[A];中國毒理學會第二屆全國中青年學者科技論壇會議論文集[C];2007年
7 余珂;王敬賢;周炳升;;多溴聯(lián)苯醚誘導人神經SK-N-SH細胞調亡的機理[A];湖北省暨武漢市生物化學與分子生物學學會第八屆第十七次學術年會論文匯編[C];2007年
8 冉新澤;鄭懷恩;王艾平;王鋒超;韓京;;他汀對內皮細胞輻射損傷組織因子與細胞調亡的影響[A];中國毒理學會放射毒理專業(yè)委員會第七次、中國毒理學會免疫毒理專業(yè)委員會第五次、中國環(huán)境誘變劑學會致突專業(yè)委員會第二次、中國環(huán)境誘變劑學會致畸專業(yè)委員會第二次、中國環(huán)境誘變劑學會致癌專業(yè)委員會第二次全國學術會議論文匯編[C];2008年
9 崔承彬;閆少羽;蔡兵;趙慶春;姚新生;曲戈霞;;黑果黃皮Clausena dunniana Levl中咔唑生物堿類新細胞周期抑制劑及細胞調亡誘導劑的核磁共振研究[A];第十一屆全國波譜學學術會議論文摘要集[C];2000年
10 吳耀輝;鄒萍;;Sunrivin基因沉默對K562細胞調亡影響的研究[A];第11次中國實驗血液學會議論文匯編[C];2007年
相關重要報紙文章 前1條
1 張?zhí)锟?細胞調亡的意義[N];中國人口報;2002年
相關博士學位論文 前10條
1 羅曉明;載藥聚合物超細纖維作為腫瘤局部制劑的研究[D];西南交通大學;2014年
2 王石;黃芪甲苷促進血管新生的分子機制研究[D];南京中醫(yī)藥大學;2013年
3 宋楊;抗CD25單抗對腎移植患者調節(jié)性T細胞生存和功能改變影響的研究[D];復旦大學;2014年
4 羅忠光;CRL E3泛素連接酶靶向新藥MLN4924在體內外殺傷肝癌細胞的作用及機制研究[D];復旦大學;2014年
5 肖林林;巨噬細胞對血管細胞的輻射旁效應及其分子機制研究[D];復旦大學;2014年
6 張峰;戊型肝炎病毒基因4型在PLC/PRF/5細胞中的培養(yǎng)及其特征研究[D];北京協(xié)和醫(yī)學院;2014年
7 陳鳳華;Tat-SmacN7融合肽對腫瘤細胞輻射增敏作用的研究[D];北京協(xié)和醫(yī)學院;2013年
8 虞志新;Th17/Treg失衡及其與中性粒細胞相互影響在ARDS發(fā)病中的作用和機制研究[D];江蘇大學;2015年
9 黃凌燕;STK33基因在下咽鱗狀細胞癌發(fā)生發(fā)展中的作用機制研究[D];山東大學;2015年
10 袁媛;let-7c介導c-Myc基因調控逆轉肝癌細胞多藥耐藥的機制研究[D];蘭州大學;2015年
相關碩士學位論文 前10條
1 王帥帥;Marc-145細胞中豬繁殖與呼吸綜合癥病毒粒子與胞外體的分離與鑒定[D];山西農業(yè)大學;2015年
2 杜文娟;NK-lysin通過Wnt/β-catenin信號通路抑制肝癌細胞侵襲與轉移的研究[D];山西農業(yè)大學;2015年
3 張曉嬌;天然抗氧化劑對乳腺癌MCF-7/ADM細胞的耐藥逆轉作用及機制研究[D];河北聯(lián)合大學;2014年
4 呂超紹;重組人干擾素γ(rhIFN-γ)對白血病K562細胞免疫逃逸的影響[D];昆明理工大學;2015年
5 汪建陽;Ang-(1-7)通過G蛋白偶聯(lián)受體Mas對人肝癌HepG2細胞的影響研究[D];廣西醫(yī)科大學;2015年
6 任志濤;小檗堿對TGF-β1誘導A549細胞上皮間質轉化和MRC-5細胞轉分化及細胞信號通路相關蛋白的影響[D];北京協(xié)和醫(yī)學院;2015年
7 楊曉姍;重組人p66Shc腺病毒和賴氨藤黃酸鹽對腫瘤細胞的抑制作用及機制[D];北京協(xié)和醫(yī)學院;2015年
8 萬愛英;大分割照射生物效應實測數(shù)據(jù)與LQ公式計算數(shù)據(jù)的比較研究[D];北京協(xié)和醫(yī)學院;2015年
9 邢曉萌;白藜蘆醇對肺癌A549細胞的放射增敏作用及其機制研究[D];北京協(xié)和醫(yī)學院;2015年
10 曹曰針;胞外泛素對Treg細胞免疫抑制活性的影響[D];復旦大學;2014年
,本文編號:2503016
本文鏈接:http://www.sikaile.net/yixuelunwen/yiyaoxuelunwen/2503016.html