海量藥物數(shù)據(jù)的靶標關系預測研究
發(fā)布時間:2018-06-26 13:00
本文選題:網(wǎng)絡藥理學 + 虛擬篩選; 參考:《華東理工大學》2014年碩士論文
【摘要】:網(wǎng)絡藥理學為藥物研發(fā)帶來了新的理論指導,其思想是構(gòu)建一個信息全面的生物信息網(wǎng)絡,采用計算機技術(shù)對網(wǎng)絡進行模擬分析,多方位考察藥物在網(wǎng)絡中的作用,降低毒副作用,提高治療效果,從而提高新藥研發(fā)的成功率,降低研發(fā)成本。 虛擬篩選采用計算機技術(shù)模擬先導化合物的篩選過程,從海量藥物數(shù)據(jù)庫中匹配出推薦的先導化合物。目前應用廣泛的幾種虛擬篩選技術(shù)都是通過三維化學空間來分析,而很多靶標蛋白的三維結(jié)構(gòu)都還沒有測量出來,無法得以應用。另外,目前國際上的一些主流藥物數(shù)據(jù)信息庫共享信息有限,無法構(gòu)建信息全面的藥理網(wǎng)絡。為解決這些問題,本文首先對網(wǎng)絡藥理學研究現(xiàn)狀進行分析,設計了一個包含國際主流藥物數(shù)據(jù)庫信息以及實驗信息實時關聯(lián)入庫的信息全面的藥物生物化學信息庫。本文進而分析了藥物靶標關系預測研究現(xiàn)狀,遵循網(wǎng)絡藥理學的理論指導,構(gòu)建基于藥物生物化學信息庫數(shù)據(jù)的藥理網(wǎng)絡,提出兩種混合相似度預測方法,在構(gòu)建的藥理網(wǎng)絡中全面考慮藥物的作用,取得了更好的藥物靶標關系預測效果。最后,本文對藥物生物信息庫數(shù)據(jù)進行篩選,對兩種混合方法進行驗證分析,在處理海量藥物數(shù)據(jù)時采用Hadoop分布式平臺以提高運算效率。
[Abstract]:Network pharmacology has brought new theoretical guidance for drug research and development. Its idea is to construct a comprehensive information biological information network, to simulate and analyze the network by computer technology, and to investigate the role of drugs in the network. Reduce toxic side effects, improve therapeutic effect, thus improve the success rate of new drug research and development, reduce R & D costs. Virtual screening simulates the screening process of lead compounds and matches the recommended lead compounds from massive drug databases. At present, several virtual screening techniques are widely used to analyze them by three-dimensional chemical space. However, many of the three-dimensional structures of target proteins have not been measured and can not be applied. In addition, some mainstream drug data databases share limited information, so it is impossible to build a comprehensive pharmacological network. In order to solve these problems, this paper first analyzes the current situation of online pharmacology research, and designs a comprehensive drug biochemistry information base which includes the international mainstream drug database information and the real-time correlation of experimental information into the database. In this paper, the current research situation of drug target relationship prediction is analyzed, and the pharmacological network based on the data of drug biochemistry information base is constructed according to the theoretical guidance of network pharmacology, and two hybrid similarity prediction methods are proposed. The effect of drug was considered in the pharmacological network, and a better prediction effect of drug target relationship was obtained. Finally, the data of drug bioinformatics database are screened, the two mixed methods are verified and analyzed, and Hadoop distributed platform is adopted to improve the computational efficiency when dealing with massive drug data.
【學位授予單位】:華東理工大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:R96-39
【參考文獻】
相關期刊論文 前7條
1 楊潔;儲平;熊玉徽;王睿;唐于平;段金廒;;計算機輔助藥物設計在中藥現(xiàn)代化中的應用[J];世界臨床藥物;2009年10期
2 周婷婷;容健鋒;王正華;董蘊源;王勇獻;朱云平;;一種基于KEGG數(shù)據(jù)庫重構(gòu)代謝網(wǎng)絡的新方法[J];計算機工程與科學;2010年08期
3 王娟;李學軍;;網(wǎng)絡藥理學與藥物發(fā)現(xiàn)研究進展[J];生理科學進展;2011年04期
4 韓增葉;田平芳;;KEGG數(shù)據(jù)庫在生物合成研究中的應用[J];生物技術(shù)通報;2011年01期
5 吳可柱;李昆;李愛秀;;虛擬篩選技術(shù)與新藥開發(fā)[J];武警醫(yī)學院學報;2011年05期
6 吳磊宏;高秀梅;王林麗;劉騫;范驍輝;王毅;程翼宇;;附子多成分作用靶點預測及網(wǎng)絡藥理學研究[J];中國中藥雜志;2011年21期
7 劉西;盧朋;左曉晗;陳建新;楊洪軍;楊一平;高一波;;基于二分圖評價模型的網(wǎng)絡藥物靶標預測改進方法[J];中國中藥雜志;2012年02期
,本文編號:2070467
本文鏈接:http://www.sikaile.net/yixuelunwen/yiyaoxuelunwen/2070467.html
最近更新
教材專著