高活性多孔磷鈣基載藥復(fù)合骨支架的制備及性能研究
[Abstract]:A large number of patients suffer from bone-related disease each year due to the gap in the bone product. The natural bone has the ability of self-healing, but when the bone defect is too large, it is necessary to carry out the operation grafting. Now the clinical treatment means include the main autograft and the allogenic bone graft, but the self-healing can cause a new wound and infection, Allogeneic bone is the risk of immune rejection and disease infection, so the artificial bone scaffold is of great concern to the researchers. The ideal artificial bone scaffold requires certain porosity, mechanical property and cell adhesion property, and can provide mechanical property stability to ensure that the bone repair process is completed at the defect site after the bone graft. In this paper, a bone scaffold is prepared by selecting a phosphate-based material, since the inorganic component in the natural bone is mainly calcium-like calcium phosphate, and the calcium phosphate has good osteogenic effect. In this paper, a systematic study on the synthesis and phase formation conditions of multi-phase calcium phosphate is carried out, and a porous phosphocalcium-based scaffold with good mechanical properties and biological properties is prepared by a suitable preparation method, and the physical and chemical properties and biological properties of the scaffold are systematically characterized. Finally, the osteogenic properties of the stent were evaluated. The main contents and results were as follows: 1. The hydroxyapatite (HA) synthesized by the wet chemical method is mainly needle-like, and the synthesized tricalcium phosphate (TCP) is non-regular. And the particle is mainly in a non-fixed form at normal temperature, and then is changed into a p-TC after the temperature of 800 DEG C or more is burned. P. The wet chemical method can prepare the multi-phase calcium phosphate, and can control the phase group of the multi-phase calcium phosphate through the pH value, the calcium-phosphorus ratio and the coal-fired temperature control. The heating temperature is 600-800 DEG C and is mainly a calcium-deficient apatite (CDA) phase, and is more than 1200 DEG C When the pH is 6.5 and 10.5, the increase of the crystallinity of the calcium-phosphorus ratio increases with the increase of the calcium-phosphorus ratio, mainly for HA and p-TCP. When the pH is between 7.5 and 9.5, the calcium-phosphorus ratio is at 1.55, the polyphasic calcium phosphate has a CDA phase in addition to the presence of the HA and the HCO3-TCP phase; when the calcium-phosphorus ratio is 1.60 and 1.75, the multi-phase calcium phosphate has good crystallinity, and there are more than three phase components; and the calcium-phosphorus ratio is between 1.65 and 1.70. The multi-phase calcium phosphate is mainly HA and CDA. Phase. The main needle-like appearance of the multi-phase calcium phosphate in the unfired condition, with the increase of the sintering temperature and the change of the morphology of the particle, is in the form of a rod at the temperature of 600 DEG C, is an elliptic shape at the temperature of 800 DEG C, and becomes a non-regular phase at the temperature of 120 DEG C. Appearance.2. The ratio of HA/ (HA + HCO3-TCP) in the two-phase calcium phosphate is mainly controlled by the pH value and the calcium-phosphorus in the reaction condition. The HA content in the two-phase calcium phosphate increased with the increase of the pH value. The amount of HA in the two-phase calcium phosphate is the highest when the ratio of the calcium and phosphorus to 1.65 is 1.65, and the higher the HA content in the two-phase calcium phosphate when the ratio of the calcium to phosphorus is about 1.65; when the calcium-phosphorus ratio is 1.65, the HA in the two-phase calcium phosphate 3. The BCP/ PVA stent was prepared by using the emulsion foaming method in combination with the circulation freeze-thaw method, and the pore size (50-700. mu.m), the porosity (73-87%), the mechanical property (0.19-0.26 MPa), the degradation rate, and the mechanical properties (0.19-0.26 MPa) of the control stent can be adjusted by the PVA content. With the increase of PVA content, the porosity, mechanical properties, degradation rate and cell compatibility of BCP/ PVA stent The trend is now reduced. When the PVA content is 30%, the pore size of the BCP/ PVA stent is between 300 and 500. m u.m, and the pressure In addition, that change in pH of the BCP/ PVA stent in the simulated body fluid was small and remained at 7.18-7. .36. The BCP/ PVA stent did not inhibit the multiplication of the osteoblast, and with the decrease of the PVA content, the propagation of the osteoblast on the surface of the scaffold was increased, and the mesenchymal stem cells could be on the BCP/ PVA stent with a PVA content of 30%. To sum up, the prepared BCP/ PVA stent can meet the cancellous bone tissue 4. The PU foam replication method can be used to prepare the BCP support with the pore size of 300-700 & mu; m, and the BCP can be controlled by selecting PU foam with different ppi. The pore size of the stent is reduced. The porous BCP stent is coated with the HA/ PLLA nano composite, the pore size and the hole-connecting structure of the stent are not changed, the fracture crack of the hole wall of the BCP bracket can be filled, and the high-molecular-based fiber is formed on the hole wall so as to improve The mechanical properties of the stent. After the BCP stent is coated, the porosity is reduced, and the porosity is still above 93%, but the compressive strength is increased from 0.31 MPa to 3.35-3.95MPa, and the compressive strength of the cancellous bone can be met (0.02-4 MPa). In addition, after the BCP stent was coated, the rate of degradation of the stent in the simulated body fluid was reduced, and the pH of the simulated body fluid was not significantly changed, maintained between 6.8 and 7.4, and maintained at 30 days The porosity of the stent was reduced after multiple coating of the porous BCP scaffold with HA/ PLLA nanocomposite, but the compressive strength was further improved, with the increase of the number of coatings, the decrease of porosity, the compression, The results of MTT showed that with the increase of the number of coatings, the cell compatibility of the stent decreased, and the cell compatibility of the BCP porous scaffold of the HA/ PLLA nanocomposite was the best. After HE staining, the inflammatory cells were found in the early stage, with the increase of time, the inflammatory cells disappeared and the bone-like apatite layer and the fibrous tissue layer appeared, indicating that the stent was good. 5. In the single simulated body fluid environment, with the increase of the biomimetic deposition time, the weight loss ratio of the HA/ PLLA nano-composite coating BCP scaffold decreased after the decrease of the biomimetic deposition time. and the surface of the support pore wall forms the nano calcium phosphate mineralizer particles and is accompanied by the appearance of the needle-like mineralizer; and in the later stage of the deposition, in the surface of the support, in the supersaturated simulated body fluid environment, the bionic deposition speed of the support is improved, the calcium phosphate mineralizer is quickly deposited on the surface of the wall of the support wall, and the sediment appearance on the wall of the support hole becomes uniform as the deposition time is increased, and the single S and the calcium ion in the calcium phosphate is replaced by the magnesium and the potassium ions, the size of the linear PLGA-mPEG copolymer drug-loaded microsphere prepared by the double-emulsion method is 5-10 & mu; m and the size and the size distribution are relatively uniform. The standard curve of BSA and vancomycin can be determined by the detection and analysis of the ultraviolet spectrophotometer, the fitting degree of the BSA and the vancomycin is good when the content of the BSA is lower than 200 mg/ L, the fitting degree of the content is higher than 100 mg/ L, the fitting degree of 278 nm is good; for vancomycin, at 280n, the invention can control the degradation rate of the copolymer by controlling the LA/ GA molar ratio of the copolymer, and further control the release rate of the copolymer drug-loaded microspheres, In addition, the prepared drug-loaded microspheres can be well adhered to the HA/ PLLA nano composite 7. The prepared HA/ PLLA nano-composite coating BCP stent was subjected to toxic and rational test analysis, and no obvious toxic property was shown in the toxicity test, and it was non-toxic and in accordance with the acute toxicity grading standard. The biological evaluation standard of the national medical device. The experimental animals did not show any abnormal activity after operation through the muscle implantation experiment, and the scaffold in the animal body increased with the time to form the bone-like apatite layer and the fibrous tissue layer, and the surrounding muscle tissue exhibited biological inertia, The stent has good biocompatibility. After the stent is implanted through the bone defect repair experiment, after the stent is implanted, the new bone is gradually formed at the defect site, the stent is absorbed and degraded, a large number of bone units are formed in the vicinity of the mature bone tissue in the central region of the dense bone, and the new bone and the surrounding bone tissue are The late tight connection is difficult to distinguish, and the prepared stent has the advantages of
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:R318.08
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳巧鳳,唐艷娟,陳槐卿,吳江,尹光福;成骨誘導(dǎo)的大鼠骨髓間充質(zhì)干細(xì)胞與不同比例的β-TCP/PLLA支架材料復(fù)合的研究[J];生物醫(yī)學(xué)工程學(xué)雜志;2005年02期
2 周大利,楊為中,尹光福,鄭昌瓊,陳銳,陳槐卿;β-磷酸三鈣/聚L-乳酸與大鼠骨膜成骨細(xì)胞復(fù)合骨修復(fù)材料的研究[J];無機(jī)材料學(xué)報(bào);2005年01期
3 何創(chuàng)龍,夏烈文,羅彥鳳,王遠(yuǎn)亮;快速成形技術(shù)在骨組織工程領(lǐng)域的應(yīng)用進(jìn)展[J];生物醫(yī)學(xué)工程學(xué)雜志;2004年05期
4 陳銳,陳槐卿,韓君,周大利,鄭昌瓊;聚L-乳酸(PLLA)/β-磷酸三鈣(β-TCP)多孔復(fù)合材料的制備及其性能研究[J];生物醫(yī)學(xué)工程學(xué)雜志;2001年02期
5 劉剛,胡蘊(yùn)玉,趙建寧,熊卓;新型聚左旋乳酸/磷酸三鈣多孔材料構(gòu)建工程化骨的體外研究[J];中華實(shí)驗(yàn)外科雜志;2004年04期
6 歐陽東;使用生物降解PLLA螺釘進(jìn)行下頜骨前份骨折Lag-Screw固定:一份前瞻性報(bào)道[J];醫(yī)學(xué)信息;2000年06期
7 蔡峰,孫可敬,陳天國;可吸收內(nèi)固定物(SR-PLLA)在創(chuàng)傷骨科中的應(yīng)用體會(huì)[J];浙江臨床醫(yī)學(xué);2000年02期
8 侯勁松,李祖兵,黃洪章;聚乳酸在頜骨缺損修復(fù)中的應(yīng)用[J];口腔頜面外科雜志;2001年03期
9 王立,金大地,樸仲賢;生物可吸收高強(qiáng)度固態(tài)壓縮聚丙交酯的降解特征和強(qiáng)度維持[J];中國生物醫(yī)學(xué)工程學(xué)報(bào);2003年03期
10 艾合麥提;生物降解聚酯材料在骨科的應(yīng)用研究[J];上海生物醫(yī)學(xué)工程;2000年04期
相關(guān)會(huì)議論文 前10條
1 焦簡金;毛丹;鄭璇;盧藝華;劉榕芳;肖秀峰;;冷凍抽提相分離法制備PLLA多孔支架[A];2011中國材料研討會(huì)論文摘要集[C];2011年
2 陳銳;陳槐卿;韓君;周大利;鄭昌瓊;;骨組織工程用聚 L-乳酸(PLLA)/β-磷酸三鈣(β-TCP)的體外研究[A];21世紀(jì)醫(yī)學(xué)工程學(xué)術(shù)研討會(huì)論文摘要匯編[C];2001年
3 劉斌;董寅生;章慶國;林萍華;浦躍樸;郭超;劉朝紅;郭宗科;;骨組織工程鈣磷生物陶瓷多孔支架的制備[A];中國生物醫(yī)學(xué)工程學(xué)會(huì)第六次會(huì)員代表大會(huì)暨學(xué)術(shù)會(huì)議論文摘要匯編[C];2004年
4 孔祥東;崔福齋;;絲素調(diào)制的磷酸鈣生物礦化研究[A];浙江省生物化學(xué)與分子生物學(xué)學(xué)術(shù)交流會(huì)論文集[C];2005年
5 王君蓮;王揚(yáng);郝紅;;可注射PLLA-PEG-PLLA水凝膠的合成及表征[A];中國化學(xué)會(huì)第15屆反應(yīng)性高分子學(xué)術(shù)討論會(huì)論文摘要預(yù)印集[C];2010年
6 王哲;王嬌娜;李秀艷;李從舉;;激光熔體靜電紡絲法制備PLLA/nHA纖維及其表征[A];中國化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第4分會(huì)場摘要集[C];2012年
7 馮祖德;;磷酸鈣/微量元素復(fù)合納米粉體及其制備技術(shù)[A];第十五屆華東地區(qū)熱處理年會(huì)暨華東地區(qū)熱處理年會(huì)三十周年紀(jì)念活動(dòng)論文摘要集[C];2006年
8 王淑紅;潘可風(fēng);任杰;;新型聚乳酸支架材料在骨組織工程中的實(shí)驗(yàn)研究[A];2004年上海市口腔醫(yī)學(xué)學(xué)術(shù)年會(huì)論文匯編[C];2004年
9 李延報(bào);潘利麗;翁文劍;杜丕一;沈鴿;韓高榮;;濕化學(xué)法制備納米結(jié)構(gòu)化的多相磷酸鈣材料研究[A];全國第三屆溶膠—凝膠科學(xué)技術(shù)學(xué)術(shù)會(huì)議論文摘要集[C];2004年
10 徐強(qiáng);董心;郭勇;武漢;葉金鐸;張春秋;;骨組織工程化培養(yǎng)的力學(xué)環(huán)境(綜述)[A];天津市生物醫(yī)學(xué)工程學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)暨首屆生物醫(yī)學(xué)工程前沿科學(xué)研討會(huì)論文集[C];2009年
相關(guān)重要報(bào)紙文章 前10條
1 ;磷酸三鈣[N];中國畜牧獸醫(yī)報(bào);2008年
2 證券時(shí)報(bào)記者 劉行健;磷酸鈣鹽價(jià)格有望趨穩(wěn)回落[N];證券時(shí)報(bào);2008年
3 ;松質(zhì)骨粒磷酸鈣復(fù)合材料的實(shí)驗(yàn)研究[N];中國醫(yī)藥報(bào);2003年
4 吳苡婷;“人造骨”巧匠的不了情緣[N];上海科技報(bào);2008年
5 李嘵林;磷酸鈣多孔生物陶瓷應(yīng)用研究取得進(jìn)展[N];科技日報(bào);2002年
6 周忠華;超高強(qiáng)磷酸鈣陶瓷的生產(chǎn)工藝[N];廣東建設(shè)報(bào);2007年
7 ;早稻栽培技術(shù)[N];農(nóng)資導(dǎo)報(bào);2006年
8 河北省畜牧獸醫(yī)研究所 李英 安永福 劉榮昌 河北農(nóng)業(yè)大學(xué) 曹玉鳳 李建國;管好泌乳期母牛[N];河北科技報(bào);2006年
9 周宗富;高耐熱抗菌陶瓷釉料制備工藝簡介[N];廣東建設(shè)報(bào);2006年
10 中國農(nóng)科院鄭州果樹研究所研究員 鄭高飛 提供;育苗用營養(yǎng)土咋配制[N];河南科技報(bào);2006年
相關(guān)博士學(xué)位論文 前10條
1 聶磊;高活性多孔磷鈣基載藥復(fù)合骨支架的制備及性能研究[D];華中科技大學(xué);2013年
2 周大利;磷酸鈣系新型骨修復(fù)復(fù)合材料的研究[D];四川大學(xué);2003年
3 齊義營;干細(xì)胞片/富含血小板血漿/磷酸鈣顆粒用于骨修復(fù)的研究[D];浙江大學(xué);2013年
4 馬祖?zhèn)?聚乳酸軟骨組織工程支架制備、改性及其細(xì)胞相容性研究[D];浙江大學(xué);2003年
5 梅芳;骨組織修復(fù)相關(guān)細(xì)胞在電紡絲膜上的生物學(xué)行為研究[D];北京化工大學(xué);2010年
6 馬瑤;新型可吸收材料PLLA/PLLA-gHA對骨折愈合相關(guān)蛋白表達(dá)影響的實(shí)驗(yàn)研究[D];吉林大學(xué);2010年
7 閆志偉;細(xì)胞膜片策略應(yīng)用于骨組織工程的初步研究[D];第四軍醫(yī)大學(xué);2010年
8 劉朋;細(xì)胞培養(yǎng)環(huán)境下的磷酸鈣礦化及其對細(xì)胞活性的影響[D];浙江大學(xué);2012年
9 顏靜;明膠/PLLA復(fù)合纖維膜的制備及在角膜組織工程中的性能研究[D];吉林大學(xué);2012年
10 劉文濤;仿生骨修復(fù)支架材料的設(shè)計(jì)及其成骨誘導(dǎo)機(jī)制的研究[D];吉林大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 劉朝紅;骨組織工程磷酸鈣生物陶瓷多孔支架的制備及性能[D];東南大學(xué);2004年
2 苗貴強(qiáng);聚左旋乳酸/殼聚糖納米纖維三維多孔支架復(fù)合骨髓間充質(zhì)干細(xì)胞修復(fù)骨缺損的實(shí)驗(yàn)研究[D];暨南大學(xué);2011年
3 邱大鵬;PLLA電紡膜動(dòng)/靜態(tài)環(huán)境下的降解及控釋研究[D];天津大學(xué);2010年
4 呂麗永;PLLA/β-TCP納米復(fù)合支架的制備及性能研究[D];青島大學(xué);2013年
5 肖斌;AW生物活性玻璃陶瓷多孔支架材料制備及性能研究[D];四川大學(xué);2005年
6 王sセ,
本文編號(hào):2507103
本文鏈接:http://www.sikaile.net/yixuelunwen/swyx/2507103.html