以用戶為中心的微博信息轉(zhuǎn)發(fā)研究與預(yù)測
[Abstract]:Weibo message forwarding is one of the key issues in the research of information dissemination. Forecasting the probability and trend of information forwarding has important application value in information dissemination, public opinion monitoring, product recommendation and so on. The existing research mainly based on the network structure and the information history dissemination law predicts the information future dissemination tendency, mostly ignores the individual difference between the user. In user behavior based forwarding prediction, we mainly study the factors of information being forwarded from the point of view of information publisher, and less study the influencing factors of user forwarding information. In this paper, user-centered, from the perspective of information receiver, by mining the main factors that affect the user forwarding and combining with the classification algorithm in machine learning, the main work is as follows: first, According to the demand of practical problems, the data set of the research is captured by API provided by Weibo platform, including user information, Weibo information, user relationship information and forwarding relation information, and the characteristics and integrality of the data set are analyzed and described. And combined with the actual characteristics of the impact of the selection. Then, the important factors that affect the user's forwarding behavior are mined, including the information publisher feature, the information receiver feature and the user interaction feature, and the characteristics and effects of the selected features are analyzed by mining the relationship graph between the features and the forwarding. Finally, support vector regression, naive Bayes and random forest classification algorithms are used to predict whether the information is forwarded or not. By comparing the experimental results, the classification algorithm which is most suitable for simulating the real forwarding process in the network is selected. The necessity of researching the prediction of information forwarding behavior by mining user features is confirmed by model analysis, and the importance of different factors affecting information forwarding behavior is obtained by using the error rate.
【學(xué)位授予單位】:首都經(jīng)濟貿(mào)易大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:G206
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馬曉峰;王磊;陳觀淡;;基于混合特征學(xué)習(xí)的微博轉(zhuǎn)發(fā)預(yù)測方法[J];計算機應(yīng)用與軟件;2016年11期
2 柯峗;;新浪微博信息傳播的影響因素分析與效果預(yù)測[J];現(xiàn)代情報;2016年03期
3 李洋;陳毅恒;劉挺;;微博信息傳播預(yù)測研究綜述[J];軟件學(xué)報;2016年02期
4 邢千里;劉列;劉奕群;張敏;馬少平;;微博中用戶標(biāo)簽的研究[J];軟件學(xué)報;2015年07期
5 胡云;王崇駿;吳駿;謝俊元;李慧;;微博網(wǎng)絡(luò)上的重疊社群發(fā)現(xiàn)與全局表示[J];軟件學(xué)報;2014年12期
6 羅知林;陳挺;蔡皖東;;一個基于隨機森林的微博轉(zhuǎn)發(fā)預(yù)測算法[J];計算機科學(xué);2014年04期
7 曹玖新;吳江林;石偉;劉波;鄭嘯;羅軍舟;;新浪微博網(wǎng)信息傳播分析與預(yù)測[J];計算機學(xué)報;2014年04期
8 毛佳昕;劉奕群;張敏;馬少平;;基于用戶行為的微博用戶社會影響力分析[J];計算機學(xué)報;2014年04期
9 陳慧娟;鄭嘯;陳欣;;微博網(wǎng)絡(luò)信息傳播研究綜述[J];計算機應(yīng)用研究;2014年02期
10 吳凱;季新生;劉彩霞;;基于行為預(yù)測的微博網(wǎng)絡(luò)信息傳播建模[J];計算機應(yīng)用研究;2013年06期
相關(guān)碩士學(xué)位論文 前1條
1 任天功;社交網(wǎng)絡(luò)中轉(zhuǎn)發(fā)預(yù)測的研究[D];哈爾濱理工大學(xué);2015年
,本文編號:2152253
本文鏈接:http://www.sikaile.net/xinwenchuanbolunwen/2152253.html