基于紋理特征的網(wǎng)紋哈密瓜分類研究
[Abstract]:Although the output of Hami melon occupies the first place in the world, the competitiveness of international market is weak, the selling price is far lower than other countries, such as Japan and Korea, and the economic benefit is low. The main reason is that the traditional mesh Hami melon appearance quality detection and classification mainly by manual sorting, low efficiency and poor accuracy. With the increasing improvement of image processing technology and computer software and hardware, intelligent machine vision technology has been widely used in the external quality detection of reticulated Hami melon. In this study, three kinds of reticulated cantaloupe, Mi 17 of Xizhou, Jinmi 3 and Wang 86, were studied. According to one of the important external qualities, texture feature, the classification of different varieties and texture grades of Hami melon was carried out. The correlation between the outer texture of Hami melon and the saccharification of the inner center was also preliminarily explored. The main research contents and conclusions are as follows: (1) an image acquisition device for Hami melon is designed and constructed. The device consists of a moving tray, a color CCD camera, a LED light source, a self-made illumination box and a computer, which can obtain a complete and clear picture of Hami melon. In this paper, the necessity of intercepting ROI is analyzed, and a method of ROI interception is introduced. Five different ROI intercepting schemes of 500 脳 500400 脳 400300 脳 300200 脳 200 and 100 脳 100 pixels are compared. Finally, 300 脳 300 pixel ROI images were selected. (2) the classification model of Hami melon varieties based on texture features was established. Using 5 different texture feature analysis methods, 84 texture features were extracted from three varieties of Xizhou Mi 17, Jinmi 3 and 86 Wang. It was found that the 8 texture features extracted by GLCM could effectively distinguish the images of different varieties of Hami melon. The accuracy of prediction set classification is 98.52%. By making corresponding mapping rules, the sample classification of Hami melon was realized, and the result of sample classification reached 100. The experimental results show that the texture features extracted by GLCM can distinguish the images and samples of three varieties of Hami melon with high accuracy and meet the classification requirements of different varieties of Hami melon. (3) A texture classification model of Hami melon based on texture features is established. For the three gradation textures of principal grade, first class and equal class, the classification results of different grade textures based on SFS,GA and mRMR feature selection methods are compared. It is found that the SFS method is the best in reducing the dimension of the combined features, and the number of the selected features is 131.33 and 21 respectively. In addition, the SFS method has the highest classification accuracy for three varieties of Hami melon texture images of different grades, which is 89.44% and 86.67%, respectively. The corresponding mapping rules are defined to realize the classification of Hami melon three-level samples. The classification accuracy of the samples is 91.67 88.33% and 83.33% respectively, which is close to the classification results of the three-level texture images. The experimental results show that the combination of texture features and SFS features can achieve the classification of different texture images and samples of Hami melon. And it has good robustness to different varieties of Hami melon. (4) the correlation between texture features and sugar content of Hami melon is analyzed. Taking 86 king as an example, the correlation between central sugar content and texture grade and texture feature of Hami melon was analyzed. By comparing the prediction results of three modeling methods, PLS,SMLR and PCR, it is found that the best prediction results are obtained by using the PLS saccharification detection model. The correlation coefficients of correction set and cross validation are 0.8804 and 0.7524 respectively. The correlation coefficient of PLS is 0.9476 擄Brix,RMSECV and 1.3403 擄Brix., respectively. The experimental results show that there is a certain correlation between texture features and central saccharification.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S652.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張弓,D.S.Jayas,蔣德云,張肇鯤;谷物紋理特征的識(shí)別(英文)[J];農(nóng)業(yè)工程學(xué)報(bào);2001年01期
2 徐碩;王洲;;基于紋理特征和神經(jīng)網(wǎng)絡(luò)的圖像識(shí)別[J];中國(guó)農(nóng)學(xué)通報(bào);2007年09期
3 楊倩;高曉陽;武季玲;李紅嶺;楊占峰;孔彥龍;毛紅玉;寇敏瑜;;基于顏色和紋理特征的大麥主要病害識(shí)別研究[J];中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào);2013年05期
4 朱新波;王婷;李重根;胡傳雙;胡碩飛;;基于紋理特征的柳杉鋸材表面節(jié)疤缺陷的自動(dòng)識(shí)別[J];華南農(nóng)業(yè)大學(xué)學(xué)報(bào);2009年03期
5 劉健;余坤勇;許章華;李國(guó)清;繆麗娟;沈建文;;竹資源專題信息提取紋理特征量構(gòu)建研究[J];遙感信息;2010年06期
6 高帥;牛錚;劉翔;吳朝陽;;結(jié)合雷達(dá)影像紋理特征的作物葉面積指數(shù)估測(cè)[J];國(guó)土資源遙感;2010年03期
7 徐貴力,毛罕平,李萍萍;差分百分率直方圖法提取缺素葉片紋理特征[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2003年02期
8 曾傳華;陳紅;丁幼春;高云;;基于顏色和紋理特征的竹材分類方法研究[J];林業(yè)機(jī)械與木工設(shè)備;2010年03期
9 尹建新;祁亨年;馮海林;杜曉晨;;一種基于混合紋理特征的木板材表面缺陷檢測(cè)方法[J];浙江農(nóng)林大學(xué)學(xué)報(bào);2011年06期
10 盧軍;付雪媛;苗晨琳;張琬桐;丁孺牛;;基于顏色和紋理特征的柑橘自動(dòng)分級(jí)[J];華中農(nóng)業(yè)大學(xué)學(xué)報(bào);2012年06期
相關(guān)會(huì)議論文 前10條
1 田學(xué)東;郭寶蘭;;基于紋理特征的版式識(shí)別研究[A];輝煌二十年——中國(guó)中文信息學(xué)會(huì)二十周年學(xué)術(shù)會(huì)議論文集[C];2001年
2 殷積東;劉博;王少輝;;基于粗糙集理論和關(guān)聯(lián)規(guī)則的腐蝕區(qū)域紋理特征檢測(cè)算法研究[A];圖像圖形技術(shù)研究與應(yīng)用(2010)[C];2010年
3 秦鐘;;基于紋理特征的車輛分割方法[A];第二十七屆中國(guó)控制會(huì)議論文集[C];2008年
4 王建新;周晨波;于文英;;利用紋理特征分析激光散斑圖像[A];第十一屆全國(guó)光學(xué)測(cè)試學(xué)術(shù)討論會(huì)論文(摘要集)[C];2006年
5 王宇生;陳純;;一種用于圖像檢索的紋理特征[A];中國(guó)圖象圖形學(xué)會(huì)第十屆全國(guó)圖像圖形學(xué)術(shù)會(huì)議(CIG’2001)和第一屆全國(guó)虛擬現(xiàn)實(shí)技術(shù)研討會(huì)(CVR’2001)論文集[C];2001年
6 龔紅菊;姬長(zhǎng)英;;基于紋理特征的麥穗產(chǎn)量測(cè)量方法研究[A];2007年中國(guó)農(nóng)業(yè)工程學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集[C];2007年
7 常哲;侯榆青;程濤;李明俐;劉黎寧;;綜合顏色和紋理特征的圖像檢索[A];全國(guó)第三屆信號(hào)和智能信息處理與應(yīng)用學(xué)術(shù)交流會(huì)?痆C];2009年
8 趙銀娣;蔡燕;;紋理特征在高空間分辨率遙感影像分類中的應(yīng)用探討[A];《測(cè)繪通報(bào)》測(cè)繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
9 秦健;李濤;;基于Contourlet變換提取云的旋轉(zhuǎn)不變紋理特征[A];2009第五屆蘇皖兩省大氣探測(cè)、環(huán)境遙感與電子技術(shù)學(xué)術(shù)研討會(huì)專輯[C];2009年
10 張樹恒;陽維;廖廣姍;王蓮蕓;張素;;基于形狀和紋理特征的致敏花粉顯微圖像識(shí)別[A];中華醫(yī)學(xué)會(huì)2010年全國(guó)變態(tài)反應(yīng)學(xué)術(shù)會(huì)議暨中歐變態(tài)反應(yīng)高峰論壇參會(huì)指南/論文匯編[C];2010年
相關(guān)博士學(xué)位論文 前4條
1 陳曉穎;典型地基云圖云狀的識(shí)別方法研究[D];東南大學(xué);2015年
2 夏瑜;基于結(jié)構(gòu)的紋理特征及應(yīng)用研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
3 周前進(jìn);基于紋理特征的打印文檔機(jī)源認(rèn)證技術(shù)研究[D];武漢大學(xué);2015年
4 李伯宇;圖像紋理分析及分類方法研究[D];復(fù)旦大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 李強(qiáng);基于顏色與紋理特征的圖像檢索技術(shù)研究[D];河北大學(xué);2015年
2 田甜;面向?qū)ο蟮纳种脖活愋托畔⑻崛〖夹g(shù)[D];東北林業(yè)大學(xué);2015年
3 崔巍;基于紋理特征的地表覆蓋分類算法研究[D];南京理工大學(xué);2015年
4 宋歌聲;利用超聲圖像紋理特征鑒別甲狀腺結(jié)節(jié)良惡性的研究[D];山東大學(xué);2015年
5 廖聲揚(yáng);數(shù)字視頻復(fù)制—粘貼篡改被動(dòng)取證研究[D];福建師范大學(xué);2015年
6 牧其爾;基于紋理特征的人工梭梭林生物量遙感估測(cè)研究[D];內(nèi)蒙古師范大學(xué);2015年
7 張瑞英;基于多源遙感數(shù)據(jù)的森林郁閉度估測(cè)方法研究[D];內(nèi)蒙古師范大學(xué);2015年
8 黃源;基于區(qū)域語義模板的刑偵圖像檢索算法研究[D];西安郵電大學(xué);2015年
9 趙玉丹;基于LBP的圖像紋理特征的提取及應(yīng)用[D];西安郵電大學(xué);2015年
10 林婉晴;城市不透水面信息提取方法及應(yīng)用研究[D];福建師范大學(xué);2015年
,本文編號(hào):2344170
本文鏈接:http://www.sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2344170.html