基于納米材料比色法與微流控的農(nóng)藥檢測技術(shù)研究
本文選題:農(nóng)藥檢測 + 微流控芯片; 參考:《江蘇大學(xué)》2017年碩士論文
【摘要】:由于微流控芯片尺寸小、樣品少、檢測信號微弱且極易受外界環(huán)境干擾,農(nóng)藥檢測檢出限高、靈敏度低。因此,本文從納米材料和芯片結(jié)構(gòu)2大方面,建立了納米材料比色法,利用Comsol微混合仿真和對比試驗設(shè)計驗證了高效的微流控芯片結(jié)構(gòu),研究開發(fā)了低檢出限、高靈敏度實用方便的農(nóng)藥檢測方法和技術(shù),對于保障食品安全具有重要意義。主要的研究內(nèi)容和結(jié)論如下:(1)建立了基于鐵酸銅/石墨烯量子點(CuFe_2O_4/GQDs)比色法。采用一步水熱法制備了CuFe_2O_4/GQDs納米材料,并對其進行表征驗證和性能測試。試驗結(jié)果表明,與CuFe_2O_4、GQDs單體相比,CuFe_2O_4/GQDs具有較高的催化活性。通過動力學(xué)研究發(fā)現(xiàn),CuFe_2O_4/GQDs較天然的辣根過氧化物酶(HRP)對反應(yīng)底物H_2O_2和TMB有更好的親和力。此外,對微量的中間產(chǎn)物H_2O_2進行檢測驗證,建立了吸光度和H_2O_2濃度之間的線性方程為A=0.04449+0.000786783CH_2O_2(C:m M),R2為0.98977,檢出限為6.7×10-4 M。(2)研究微流控芯片幾何結(jié)構(gòu)分別與微混合及反應(yīng)效率的關(guān)系。在局部微混合幾何結(jié)構(gòu)方面:基于微流體拉伸、壓縮、折疊、分流等思想,設(shè)計了3大類微混合結(jié)構(gòu),通過Comsol微混合仿真對比驗證得出基于矩形內(nèi)肋復(fù)合圓形循環(huán)分合型(“矩形-圓形”)結(jié)構(gòu)混合效果最佳。最佳內(nèi)肋長度L為550mm,圓形直徑d1為400mm,與其它2類最佳的矩形內(nèi)肋型和圓形循環(huán)分合型微混合機構(gòu)相比,混合效果分別提高了17.12%和39.48%;在整體芯片幾何結(jié)構(gòu)方面:設(shè)計了基于不同反應(yīng)策略的2種整體芯片結(jié)構(gòu),對比試驗得出,“傘型”結(jié)構(gòu)比“魚鱗型”結(jié)構(gòu)檢測耗時縮減17.65%,而后者比前者反應(yīng)效率提高20.93%。綜合考慮,采用“矩形-圓形”微混合結(jié)構(gòu)設(shè)計的“魚鱗型”微流控芯片。(3)對構(gòu)建的微流控農(nóng)藥檢測平臺進行試驗分析。優(yōu)化了主要的試驗條件參數(shù)。綜合考察該試驗平臺的農(nóng)藥檢測線性度、靈敏度、檢出限及選擇性等指標。最后,對實際樣品進行實用性測試。試驗結(jié)果顯示,吸光度值與毒死蜱農(nóng)藥濃度在2.0×10-8~6.0×10-7 M內(nèi)呈現(xiàn)良好的線性關(guān)系。線性方程為A=0.61822-0.000855261CChlorpyrifos(C:nM),R2為0.99758,最低檢出極限為1.01×10-8M,靈敏度為855.261 a.u.·mM-1,該方法具有良好的選擇性。此外,對農(nóng)藥在番茄、梨和河水實際樣品的加標回收率范圍在91.2%~115%之間,實用性能較好,可用于實際樣品檢測。
[Abstract]:Because the microfluidic chip is small in size, few samples, weak detection signal and easy to be interfered by the outside environment, the detection limit of pesticide is high and the sensitivity is low. Therefore, the colorimetric method of nanomaterials is established from two aspects of nanomaterials and chip structures. The high efficient microfluidic chip structure is verified by Comsol micromixing simulation and contrast test, and the low detection limit is developed. High sensitivity, practical and convenient pesticide detection methods and techniques are of great significance to ensure food safety. The main contents and conclusions are as follows: (1) the colorimetric method based on CuFe2O4 / GQDs was established. CuFeS _ 2O _ 4 / GQDs nanomaterials were prepared by one-step hydrothermal method and characterized and tested. The results show that CuFe2O4GQDs have higher catalytic activity than CuFe2O4GQDs. The kinetic study showed that the CuFe2O4 / GQDs had better affinity to the reaction substrates H _ S _ 2O _ 2 and TMB than the natural horseradish peroxidase (HRP). In addition, the linear equation between the absorbance and the concentration of H _ 2O _ 2 is established as A0.04449 0.000786783CHS _ 2O _ 2 (C: M M) and R ~ 2 = 0.98977, and the detection limit is 6.7 脳 10 ~ (-4) M. (2) the relationship between the geometric structure of the microfluidic chip and the micromixing and reaction efficiency is studied, and the detection limit is 6.7 脳 10 ~ (-4) M ~ (-1). (2) the relationship between the geometric structure of the microfluidic chip and the reaction efficiency is studied. In the aspect of local micro-mixing geometry, three kinds of micro-mixed structures are designed based on the ideas of micro-fluid stretching, compression, folding and shunt. The results of Comsol micro-mixing simulation show that the mixed effect of rectangular internal rib composite circular split-type ("rectangle-circular") structure is the best. The optimum internal rib length L is 550 mm and the circular diameter D 1 is 400 mm. Compared with the other two kinds of optimal rectangular internal rib type and circular split-type micromixing mechanism, the optimum internal rib length is 550mm and the circular diameter is 400mm. The mixing effect was improved by 17.12% and 39.48%, respectively. In terms of the geometric structure of the whole chip, two kinds of integrated chip structures based on different reaction strategies were designed and compared with each other. The "umbrella" structure was 17.65 less than the "fish scale" structure, while the latter was 20.933 higher than the former. The "fish scale" microfluidic chip was designed with "rectangular circular" microfluidic chip. (3) the experimental analysis of the microfluidic pesticide detection platform was carried out. The main parameters of test conditions are optimized. The linearity, sensitivity, detection limit and selectivity of pesticide detection were investigated. Finally, the practicability of the actual samples is tested. The results showed that there was a good linear relationship between the absorbance of chlorpyrifos and the concentration of chlorpyrifos in the range of 2.0 脳 10 ~ (-8) ~ 6.0 脳 10 ~ (-7) M. The linear equation is Acan0.61822-0.000855261CChlorpyrifos (C: nM) R2 is 0.99758, the lowest detection limit is 1.01 脳 10 ~ (-8) Mand the sensitivity is 855.261 a.u.mM-1.The method has good selectivity. In addition, the recoveries of pesticides in tomato, pear and river water samples ranged from 91.2% to 115%.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O657.3;TQ450.263
【參考文獻】
相關(guān)期刊論文 前10條
1 ;農(nóng)藥殘留問題將成為2017年重點檢查項目[J];遼寧化工;2017年01期
2 呂佳;張浩春;張冰;高文超;李興;常宏宏;魏文瓏;;納米材料比色分析傳感器在食品檢測中的應(yīng)用進展[J];化工進展;2017年01期
3 蔣雪松;王維琴;許林云;盧利群;周宏平;陳卉卉;;農(nóng)產(chǎn)品/食品中農(nóng)藥殘留快速檢測方法研究進展[J];農(nóng)業(yè)工程學(xué)報;2016年20期
4 陽仲斌;李甲枚;李偉;金晨鐘;胡軍和;;色譜技術(shù)在農(nóng)藥殘留檢測中的應(yīng)用綜述[J];現(xiàn)代農(nóng)業(yè)科技;2016年14期
5 劉冬冬;高繼慧;吳少華;秦裕琨;;熱解過程煤焦微觀結(jié)構(gòu)變化的XRD和Raman表征[J];哈爾濱工業(yè)大學(xué)學(xué)報;2016年07期
6 張亞佳;李忠海;;果蔬中有機磷農(nóng)藥殘留檢測方法研究進展[J];食品與機械;2016年02期
7 羅偉;李淼;張健;李華龍;高翔;;基于單傳感器補償融合的農(nóng)藥檢測系統(tǒng)設(shè)計[J];中國激光;2016年01期
8 楊現(xiàn)德;張文;黃振軒;鄭業(yè)萌;;嵌入式農(nóng)藥殘留檢測系統(tǒng)的設(shè)計[J];數(shù)字技術(shù)與應(yīng)用;2015年10期
9 苑寶龍;王曉東;楊平;范真真;黃昱俊;陳炯;葉嘉明;;用于農(nóng)藥殘留現(xiàn)場快速檢測的微流控芯片研制[J];食品科學(xué);2016年02期
10 孫波;孫昊;武首香;;有機磷農(nóng)藥殘留的檢測方法及研究進展[J];農(nóng)產(chǎn)品加工;2015年06期
相關(guān)博士學(xué)位論文 前6條
1 邱超;寬波段光吸收法聚合物薄膜厚度在線檢測技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2014年
2 董新艷;溶質(zhì)在超臨界CO_2及含改性劑的超臨界CO_2中擴散系數(shù)及其構(gòu)效關(guān)系研究[D];浙江大學(xué);2012年
3 劉芳;多孔介質(zhì)與流體空間交界面滑移效應(yīng)及其影響機理[D];山東大學(xué);2011年
4 燕娜;檢測食品中痕量營養(yǎng)物、非法添加劑及農(nóng)藥殘留物的高靈敏毛細管電泳法[D];蘭州大學(xué);2010年
5 張鵬;微流控芯片中多物理場耦合問題的數(shù)值模擬研究[D];吉林大學(xué);2006年
6 曹炳陽;速度滑移及其對微納尺度流動影響的分子動力學(xué)研究[D];清華大學(xué);2005年
相關(guān)碩士學(xué)位論文 前4條
1 金崇;比色法與熒光法對樣品中三聚氰胺的檢測[D];大連理工大學(xué);2013年
2 郭紅斌;用于有機磷農(nóng)藥檢測的微流控芯片[D];復(fù)旦大學(xué);2011年
3 汪洪丹;微流體系統(tǒng)的數(shù)值模擬[D];華中科技大學(xué);2008年
4 賈云濤;對流擴散方程并行算法的若干研究[D];浙江大學(xué);2006年
,本文編號:2107857
本文鏈接:http://www.sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2107857.html