手指靜脈識別方法研究
[Abstract]:Finger vein recognition is a new biological feature recognition technology based on human physiological characteristics. The identification technique uses the finger-palm-side superficial vein for identification. Like other biometric identification, finger vein recognition has four processing steps, image capture, pre-processing, feature extraction, and matching. Although some progress has been made in the research of finger vein recognition, there are still some problems in each processing step. For example, because of the random placement of the finger in the image acquisition process, there is a partial oblique image in the database, but this problem is not given enough attention in the existing image preprocessing method. At the same time, most of the existing region of interest extraction method is for image design from a certain kind of equipment, and when the image acquired from other equipment is processed, its segmentation performance will be greatly reduced. For example, in the vein-based recognition method, incomplete lines and non-robust matching methods make the identification performance still to be improved. The use of soft-feature to enhance the primary feature differentiation is an effective way to improve the recognition performance in the field of biometric identification, but the problem does not receive due attention in finger vein recognition. In addition, because that individual difference and the performance of the acquisition device are not ideal, there is a great difference in the quality of the vein image of the finger, so how to correctly evaluate the image quality is also a problem that needs to be paid attention to in the finger vein recognition. In this paper, a deep study is carried out on the problems of region extraction, texture feature extraction, soft feature extraction, image quality evaluation, etc. of finger vein image, and the main work and contribution are as follows: (1) A method for extracting a region of interest of a finger vein based on a sliding window is studied. In view of the problem of finger tilt, a method of tilt correction based on the mid-line of the finger is proposed. On the basis of image correction, a method for detecting the position of a finger joint based on a sliding window is designed, and the height of the region of interest is determined based on the position. Further, the width of the region of interest is determined by the internal trimming of the boundary between the left and right sides of the finger, so that a corrected region of interest can be obtained. And (2) a method for extracting a device-independent finger vein region of interest based on a super-pixel division is provided. The images acquired by a plurality of different devices are different in size, background gray level and noise location, area, shape, and the like, and the differences enable the existing single-device-based interest extraction method to be greatly reduced in performance. However, there are two aspects: (1) the noise is outside of the finger area; (2) the background of the finger boundary is larger than that of the finger area. At the same time, the super-pixel division can divide the adjacent pixels with similar gradation values into one block, so that not only the noise is isolated, but the background and the finger area can be divided into different blocks. Accordingly, a method for extracting a region of interest based on a super-pixel division is proposed, that is, a finger boundary is tracked from the super-pixel boundary to obtain a region of interest. (3) A method of finger vein recognition based on anatomical structure analysis was studied. One of the main causes of the existing recognition method based on the vein line is that the anatomical structure and the imaging characteristics of the finger vein are not analyzed and utilized in-depth. This work uses vein lines to have the features of the valley-shaped or half-valley cross-section, and combines the characteristics of the vein lines in the anatomy, such as the orientation, the width, the continuity and so on, and puts forward a pattern extraction method based on the analysis of the anatomical structure. In the matching stage, in order to solve the problem of large-scale image translation caused by random placement of fingers, an image calibration method based on a vein trunk is proposed. At the same time, in order to overcome the problem of small-scale grain deformation, an elastic matching method is proposed. In order to characterize the vein pattern comprehensively, the degree of the vein trunk and the elastic matching score of the vein network in the image calibration process are integrated. (4) A method of finger vein recognition combined with soft features was studied. This work detects the distal joint width of the finger and regards it as a soft feature. In ord to blend that width and vein characteristics of the joint, three framework, i. e., a fusion frame, a filter frame, and a mixing frame, are proposed. The experimental results show that the finger joint width is used as a soft feature to effectively enhance the recognition performance of finger vein features. And (5) a method for evaluating the quality of a finger vein image based on a support vector machine is proposed. In order to comprehensively characterize the image quality, three quality characteristics, namely, the spatial gradient characteristics, the contrast characteristics and the information capacity characteristics, are proposed. In view of that problem that the classification of the quality of the vein image of the finger is a non-linear classification of a small sample, a support vector machine is used in the classification problem. At the same time, in order to overcome the problem of the class imbalance between high and low quality images, the R-SMOTE technique is used to synthesize a small number of low quality images.
【學位授予單位】:山東大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TP391.41
【相似文獻】
相關期刊論文 前10條
1 趙硯田;;引人注目的靜脈識別技術[J];中國防偽報道;2009年03期
2 張拓;;手掌靜脈識別在身份識別中的應用[J];中國輸血雜志;2010年S1期
3 李沛秦;李貴林;;看不見偷不走的放心鎖——靜脈識別[J];實驗室研究與探索;2014年03期
4 吉紫娟;包佳祺;;用于手指靜脈識別的光學系統(tǒng)[J];湖北教育學院學報;2007年02期
5 陳彥德;;淺析靜脈識別技術的原理與應用[J];中國高新技術企業(yè);2008年20期
6 邱英;譚定忠;姚欣;孫暉;顧義華;宋瑞涵;;靜脈識別技術研究進展[J];機械工程師;2009年07期
7 左鐵東;張環(huán);胡德文;;手掌靜脈識別系統(tǒng)的研究與設計[J];計算機測量與控制;2009年11期
8 王科俊;劉靖宇;;基于相對距離和角度的手指靜脈識別方法[J];華中科技大學學報(自然科學版);2011年05期
9 楊穎;楊公平;;手指靜脈識別技術[J];計算機科學與探索;2012年04期
10 ;手指靜脈識別技術中紅外線的作用分析[J];中國防偽報道;2012年04期
相關會議論文 前6條
1 肖賓杰;張征;殳偉群;;靜脈識別研究的進展與應用展望[A];第七屆全國信息獲取與處理學術會議論文集[C];2009年
2 張拓;;手掌靜脈識別在身份識別中的應用[A];中國輸血協(xié)會第五屆輸血大會論文專集(摘要篇)[C];2010年
3 盧飛遠;程國建;潘華賢;;基于NiBlack的靜脈圖像的應用研究[A];第十二屆中國青年信息與管理學者大會論文集[C];2010年
4 王科俊;劉靖宇;楊曉菲;;提取相位和方向特征的手指靜脈識別方法[A];2011年中國智能自動化學術會議論文集(第一分冊)[C];2011年
5 康文雄;鄧飛其;;基于特征點角度矩陣的靜脈識別方法[A];第二十七屆中國控制會議論文集[C];2008年
6 許強;楊佳;;基于線性加權的免疫克隆算法的手指靜脈特征提取[A];中國自動化學會控制理論專業(yè)委員會B卷[C];2011年
相關重要報紙文章 前6條
1 楊二;上海環(huán)球金融中心啟用指靜脈識別考勤管理系統(tǒng)[N];中國質(zhì)量報;2008年
2 王海;峰峰集團引入靜脈互保確認系統(tǒng)[N];中國煤炭報;2010年
3 本報記者 華凌;一“指”當關 萬夫莫開[N];科技日報;2008年
4 本報記者 冰島;非接觸式手掌靜脈認證有望終結(jié)密碼時代[N];國際商報;2008年
5 張巨睿;《科學世界》解讀科技奧運[N];中國郵政報;2008年
6 葛林楠 王握文 楊燕群;手指作“密碼” 開啟保險箱[N];科技日報;2013年
相關博士學位論文 前10條
1 顏學葵;掌靜脈識別算法研究[D];華南理工大學;2015年
2 襲肖明;手指靜脈識別若干關鍵問題研究[D];山東大學;2015年
3 王軍;手部靜脈識別關鍵技術研究[D];中國礦業(yè)大學;2015年
4 孟憲靜;血管類圖像分割與識別方法研究[D];山東大學;2016年
5 楊璐;手指靜脈識別方法研究[D];山東大學;2016年
6 李鐵鋼;靜脈識別算法研究[D];吉林大學;2007年
7 陳劉奎;人體手指靜脈識別技術研究[D];武漢大學;2010年
8 宋尚玲;鼻部毛囊識別和手指靜脈識別[D];山東大學;2009年
9 秦華鋒;手指靜脈圖像質(zhì)量評估與特征識別算法研究[D];重慶大學;2012年
10 賈旭;基于多特性融合的手背靜脈識別關鍵算法研究[D];東北大學;2012年
相關碩士學位論文 前10條
1 薛琴;手掌靜脈識別技術在貴重物品物流中的應用研究[D];沈陽大學;2015年
2 孟昭慧;基于二次判別和局部信息及特征融合的手靜脈識別[D];復旦大學;2014年
3 董路梅;基于詞袋模型的手指靜脈識別方法研究[D];山東大學;2015年
4 劉菲;手指靜脈識別關鍵問題研究[D];山東大學;2015年
5 高潔睿;手指靜脈特征提取方法研究[D];沈陽工業(yè)大學;2016年
6 耿宏雨;基于手背靜脈的生物特征識別關鍵算法研究[D];東北大學;2014年
7 李思遠;手指靜脈識別關鍵問題研究[D];東北大學;2014年
8 周雄;手指靜脈識別技術的研究與實現(xiàn)[D];桂林電子科技大學;2010年
9 陳虹;基于指靜脈識別技術的社保系統(tǒng)的研究與實現(xiàn)[D];北京工業(yè)大學;2012年
10 崔菲菲;手指靜脈識別技術研究[D];山東大學;2012年
,本文編號:2436438
本文鏈接:http://www.sikaile.net/shoufeilunwen/xxkjbs/2436438.html