面向松軟地面仿蟹步行足研究
本文選題:仿生 + 中華絨螯蟹 ; 參考:《吉林大學(xué)》2017年博士論文
【摘要】:與輪式車輛相比,腿式步行機構(gòu)在松軟非結(jié)構(gòu)地面有不可替代的優(yōu)勢,發(fā)展?jié)摿薮?仿生技術(shù)的興起為腿式步行機構(gòu)的研制開辟了新的方向。中華絨螯蟹具有優(yōu)秀的運動能力,不僅能長途遷徙,還能自由穿梭于泥沼、濕地等松軟地面環(huán)境而不受困,因此,中華絨螯蟹的運動特性及步足指節(jié)結(jié)構(gòu)為腿式步行機構(gòu)及其觸土部件——步行足的設(shè)計提供生物模版和仿生依據(jù)。運用三維運動觀測系統(tǒng)采集中華絨螯蟹在平地、斜坡、沙地三種地面的運動學(xué)及動力學(xué)參數(shù),通過圖像分析步足關(guān)節(jié)角、切土角和入土角的變化,比較中華絨螯蟹在不同地面環(huán)境的行走姿態(tài)差異,討論各步足在運動中的作用。結(jié)果發(fā)現(xiàn)中華絨螯蟹在斜坡行走時的質(zhì)心速度與加速度最小,負(fù)荷因子最大,步足切土角波動大,入土角較小,證明中華絨螯蟹在斜坡行走步伐緩慢,支撐時間更多,需不斷變換和調(diào)整姿態(tài),以避免失衡;中華絨螯蟹在沙地行走時步足長節(jié)-腕節(jié)關(guān)節(jié)角小于平地和斜坡兩種硬地面,切土角值最小,入土角分布集中,說明采用小步幅、高步頻、降低身體重心的方式,防止下陷受困。中華絨螯蟹運動時第2、3對步足長節(jié)-腕節(jié)關(guān)節(jié)角最大,為主要步行足,第1對步足還起支撐作用,第4對步足較少主動參與行走,對行走的作用較小。借助體視顯微鏡、EDS、XRD、FTIR檢測及掃描電鏡(SEM)等手段對中華絨螯蟹第2、3對步足的指節(jié)進行生物學(xué)研究,分別從材料組成和微觀結(jié)構(gòu),并結(jié)合三點彎曲試驗揭示指節(jié)輕質(zhì)高強的特性。結(jié)果表明中華絨螯蟹步足指節(jié)的主要元素組成包括C、Ca、O和少量其他元素,幾丁質(zhì)(糖類)和蛋白質(zhì)是指節(jié)外骨骼中的主要有機物成分,包含的主要無機物成分為CaCO3,多以方解石為主要晶體結(jié)構(gòu)形式,且晶化程度良好,還有部分以無定形碳酸鈣的形式存在;中華絨螯蟹指節(jié)的外骨骼結(jié)構(gòu)為多層結(jié)構(gòu),包括上表皮、外表皮和內(nèi)表皮三層。外表皮厚度不均勻,與指節(jié)表面的凹凸有關(guān),內(nèi)表皮呈現(xiàn)出Bouligand結(jié)構(gòu)特點:若干獨立的纖維束排列組成蛋白纖維層,各纖維層間有一定的螺旋角,整體構(gòu)成“扭轉(zhuǎn)-膠合板”的形式。纖維層平面規(guī)則分布很多孔道,內(nèi)部含有螺旋形的孔小管,用于輸送營養(yǎng)物質(zhì)到各部位,并可增加內(nèi)表皮層的韌性;指節(jié)尖端的外表皮層表現(xiàn)出高度鈣化,增加了指節(jié)尖端的表面強度、提高抗沖擊能力和耐磨性。三點彎曲試驗結(jié)果顯示,濕潤指節(jié)試樣的韌性材料特征明顯,且彎曲載荷較大,說明指節(jié)的力學(xué)特性受水合作用的影響較大。使用掃描電鏡觀察中華絨螯蟹的指節(jié)截面結(jié)構(gòu)特征,建立仿生模型,提取幾何參數(shù),運用工程仿生方法設(shè)計4種仿生步行足與圓柱足進行比較,在6種土壤條件下進行土槽試驗。結(jié)果表明,在試驗條件下,仿生步行足的入土能耗和出土能耗均低于圓柱足,溝紋仿生結(jié)構(gòu)有利于提高步行足推進性能;影響步行足推進性能的主要因素是土壤的含水率,其次為入土深度和速度,土壤粒徑對步行足推進性能無顯著影響;當(dāng)垂直負(fù)載相同時,錐形仿生足的推進性能比圓柱足更好。綜合分析步行機構(gòu)的完整運動過程,仿生步行足的表現(xiàn)優(yōu)于圓柱足,運動靈活輕便,提高牽引力,適用于輕質(zhì)輕載小型步行機構(gòu)。步行足作為觸土部件在土壤中運動時受到的水平阻力隨速度增加而小幅線性增大,與入土深度的2次方成正比;圓錐觸土部件水平阻力隨錐角增大呈2次方非線性增加;結(jié)合土壤阻力估算式,引入錐角和速度參數(shù),建立適用于錐形變截面與圓柱觸土部件的水平阻力預(yù)測模型,能夠較準(zhǔn)確地預(yù)測和評估觸土部件在松軟地面的推進性能。以中華絨螯蟹為生物原型,簡化步足關(guān)節(jié),設(shè)計六足仿蟹步行機構(gòu)。其中腿部采用閉鏈?zhǔn)竭B桿結(jié)構(gòu),以齒輪機構(gòu)和連桿機構(gòu)為主要傳動形式,利用凸輪機構(gòu)實現(xiàn)步行腿的交替運動,通過對虛擬樣機的仿真分析,步行機構(gòu)各步行腿的負(fù)荷因子為54.21%~74.36%,且步行腿空回時間短,有較好的運動連續(xù)性與穩(wěn)定性。對仿蟹步行機構(gòu)在3種不同粗糙度地面進行通過性試驗,得到仿蟹步行機構(gòu)在粗糙地面的穩(wěn)定性高于光滑地面。以減小位移差值、加速度最大值、增加平均速度、抬腿高度等為目標(biāo),優(yōu)化仿蟹步行機構(gòu)腿部桿件EF、FG和GH的長度,通過尋優(yōu)求解,得到桿件的長度最優(yōu)值為別為EF=31.6mm、FG=36mm、GH=115mm,優(yōu)化后的綜合目標(biāo)值比初始值降低11.06%,仿蟹步行機構(gòu)的整體性能有效提升。選擇并確定仿生步行足類型和尺寸,與仿蟹步行機構(gòu)裝配,在干沙和濕沙兩種介質(zhì)中進行通過性試驗,采用三維運動觀測和分析系統(tǒng)測量仿蟹步行機構(gòu)的通過性能。結(jié)果表明,在試驗條件下,與原樣機A相比,仿生足15°安裝的樣機B與仿生足0°安裝的樣機C的最大牽引負(fù)載較高,具有較好的牽引性能,當(dāng)牽引負(fù)載增大,步行機構(gòu)的平均運動速度隨之線性下降,垂直負(fù)載對平均運動速度的影響較小。結(jié)合牽引性能,對仿蟹步行機構(gòu)的運動圖像解析,當(dāng)牽引負(fù)載一定時,在相同垂直負(fù)載下,3種樣機步行足的沉陷量大小為:樣機A樣機B樣機C,安裝仿生步行足的仿蟹步行機構(gòu)的承載能力較強,在運動中可減少入土和出土能耗,提高運動效率,比原樣機具有更好的松軟地面通過性能。步行足的安裝角度對仿蟹步行機構(gòu)的性能有影響,仿生步行足與腿部桿以15°安裝時,仿蟹步行機構(gòu)的牽引性能、承載能力和通過性能優(yōu)于步行足0°安裝的步行機構(gòu)。
[Abstract]:Compared with wheeled vehicles, the leg walking mechanism has an irreplaceable advantage in the soft and unstructured ground and has great potential for development. The rise of bionic technology has opened up a new direction for the development of leg walking mechanism. The Chinese mitten crab has excellent sports ability, not only can migrate long distance, but also freely shuttle in the soft ground ring, such as marsh, wetland and so on. Therefore, the motion characteristics of the Eriocheir sinensis and the foot knuckle structure provide the biometric and bionic basis for the leg walking mechanism and its touching part, the design of the foot foot, and the kinematic and dynamic parameters of the three kinds of ground surface of the Eriocheir sinensis in flat, slope and sandy land are collected by the three-dimensional motion observation system. The difference in walking posture of Eriocheir sinensis in different ground environment is compared, and the effect of foot on the movement is discussed. The results show that the centroid velocity and acceleration of the Chinese mitten crab on the slope are the smallest, the load is the largest, the foot cutting angle fluctuates greatly, and the angle of the earth is smaller. The Chinese Mitten Crab (Eriocheir sinensis) walks slowly on the slope and supports more time. It needs to be constantly transformed and adjusted to avoid unbalance. The long joint angle of the Eriocheir sinensis is less than the two kinds of hard ground on the ground and slope when walking in the sand. The angle of the soil cutting is the smallest and the angle of the earth is distributed. It shows that the small step, the high step frequency and the weight of the body are used to reduce the weight of the body. 2,3 of Eriocheir sinensis has the largest joint angle of the foot long joint and the wrist joint in the movement of the Chinese mitten crab. It is the main walking foot. The first pairs of feet also support the foot. The fourth pairs of feet are less active and have less action on walking. With the help of stereoscopic microscope, EDS, XRD, FTIR detection and scanning electron microscopy (SEM), the Chinese mitter is used to treat the Chinese mitten Eriocheir. The biological study of crabs 2,3 to the foot of the foot, respectively from the material composition and microstructure, and combined with the three point bending test to reveal the characteristics of the light and high strength of the knuckle. The results show that the main elements of the step foot knuckles of Eriocheir sinensis include C, Ca, O and a small amount of other elements, and the chitin (saccharide) and protein are the main elements in the exoskeleton of the phalanx. The main composition of the organic matter is CaCO3, mostly with calcite as the main crystal structure, and the crystallization degree is good, and some of them exist in the form of amorphous calcium carbonate; the exoskeleton structure of the Eriocheir sinensis's knuckle is multilayer structure, including the upper epidermis, the outer skin and the inner epidermis. The skin thickness is not uniform, and the skin thickness is not uniform. The surface of the knuckle is related to the concave and convex surface, and the inner epidermis is characterized by Bouligand structure: a number of independent fiber bundles arranged in a protein fiber layer, a certain spiral angle between each layer of fiber, and the whole form of "torsional plywood". The fibrous layer is regularly distributed in many channels, and the inner part contains a spiral orifice, which is used to transport nutrients. To each part, the toughness of the inner epidermis can be increased; the surface cortex at the tip of the phalanx shows a high calcification, increases the surface strength of the knuckle tip, improves the impact resistance and wear resistance. The three point bending test results show that the ductile material of the humid knuckle specimen is characterized by obvious characteristics and the bending load is larger, indicating that the mechanical properties of the knuckle are affected by water. The influence of cooperation is great. Using scanning electron microscope to observe the structural characteristics of the cross section of Eriocheir sinensis, establish a bionic model, extract geometric parameters, use engineering bionic method to compare 4 kinds of bionic feet with cylindrical feet, and carry out soil grooves under 6 soil conditions. The results show that under the test conditions, the bionic walking foot is entered. The soil energy consumption and unearthed energy consumption are lower than the cylindrical foot, the furrow bionic structure is beneficial to improve the walking foot propulsion performance. The main factors affecting the walking foot propulsion performance are soil moisture content, followed by soil depth and velocity, and the soil particle size has no significant influence on the walking foot propulsion performance; when the vertical load is the same, the propelling of the conical bionic foot is the same. It is better than a cylindrical foot. The comprehensive analysis of the complete motion process of the walking mechanism, the performance of the bionic walking foot is better than the cylindrical foot, the movement is flexible and light, the traction is improved, and the walking foot is applied to the light weight and light load small walking mechanism. The horizontal resistance of the 2 depth is proportional to the depth of the cone, and the horizontal resistance of the conical soil component increases with the increase of the 2 times of the cone angle, and the cone angle and velocity parameters are introduced in combination with the soil resistance estimation formula, and the horizontal resistance prediction model suitable for the conical variable section and the cylindrical contact element can be established. It can accurately predict and evaluate the push of the contact parts on the soft ground. Taking the Eriocheir sinensis as the biological prototype and simplifying the foot foot joint and designing the six foot crab walking mechanism, the leg uses the closed chain link structure, the gear mechanism and the connecting rod mechanism as the main transmission form, and the alternating motion of the walking leg is realized by the cam mechanism. Through the simulation and analysis of the virtual prototype, the walking legs are all walking legs. The load factor is 54.21%~74.36%, and the walking leg time is short, and it has better motion continuity and stability. The stability of the crab walking mechanism on 3 different roughness ground is tested. The stability of the crab walking mechanism in the rough ground is higher than that of the smooth ground. The length of leg members EF, FG and GH of the walking mechanism of the crab walking mechanism is optimized. The optimum value of the length of the rod is not EF=31.6mm, FG=36mm, GH=115mm, and the overall target value after optimization is 11.06% lower than the initial value, and the overall performance of the crab walking mechanism is improved effectively. The type and size are assembled with the crab walking mechanism, and the pass performance test is carried out in two media of dry sand and wet sand. The performance of the crab walking mechanism is measured by three dimensional motion observation and analysis system. The results show that the maximum traction of the prototype B of the bionic foot and the prototype of the prototype C is compared with the original A. With the higher traction load and better traction performance, the average motion speed of the walking mechanism decreases linearly with the increase of the traction load, and the vertical load has little effect on the average motion speed. Combining with the traction performance, the motion picture analysis of the crab walking mechanism, when the traction load is certain, 3 kinds of prototype walking feet under the same vertical load. The size of the subsidence is as follows: the prototype A prototype B prototype C, the bionic walking foot like walking crab walking mechanism has a strong bearing capacity, which can reduce the energy consumption of the earth and unearthed, improve the movement efficiency, and have better performance of the soft ground than the original machine. The installation angle of walking foot has an influence on the performance of the crab walking mechanism, bionic walking. When the foot and leg bar is installed at 15 degrees, the traction performance, carrying capacity and passing performance of the crab like walking mechanism are better than that of walking mechanism with 0 degrees walking foot.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:Q811
【相似文獻】
相關(guān)期刊論文 前1條
1 徐佩君,莊繼德,王志浩;駝足運動特性試驗研究[J];農(nóng)業(yè)工程學(xué)報;1994年03期
相關(guān)博士學(xué)位論文 前4條
1 王穎;面向松軟地面仿蟹步行足研究[D];吉林大學(xué);2017年
2 王立權(quán);兩棲仿生機器蟹模型建立與步行足協(xié)調(diào)控制技術(shù)研究[D];哈爾濱工程大學(xué);2003年
3 陳東良;仿生機器蟹兩棲步行機理與控制方法研究[D];哈爾濱工程大學(xué);2006年
4 袁鵬;仿生機器蟹步行機理分析及控制系統(tǒng)研究[D];哈爾濱工程大學(xué);2003年
相關(guān)碩士學(xué)位論文 前7條
1 郝欣偉;仿生機器蟹步行足協(xié)調(diào)運動控制系統(tǒng)研究[D];哈爾濱工程大學(xué);2007年
2 孫磊;仿生機器蟹原理樣機的研究[D];哈爾濱工程大學(xué);2005年
3 羅紅魏;兩棲仿生機器蟹關(guān)鍵技術(shù)研究[D];哈爾濱工程大學(xué);2007年
4 瞿曉榮;仿生機器蟹控制系統(tǒng)及驅(qū)動技術(shù)研究[D];哈爾濱工程大學(xué);2003年
5 張玲;仿生機器蟹機構(gòu)模型及控制系統(tǒng)研究[D];哈爾濱工程大學(xué);2006年
6 于艷爽;八足仿生機器蟹運動協(xié)調(diào)與控制系統(tǒng)研究[D];哈爾濱工程大學(xué);2004年
7 屠治國;基于DSP的仿生機器蟹控制系統(tǒng)研究[D];哈爾濱工程大學(xué);2004年
,本文編號:2068812
本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/2068812.html