剪切流中乳液碰撞動(dòng)力學(xué)行為研究
本文選題:乳液液滴 + 液滴碰撞; 參考:《東南大學(xué)》2016年博士論文
【摘要】:乳液體系廣泛應(yīng)用于能源、化工、生醫(yī)、材料等前沿科技領(lǐng)域。乳液微流控技術(shù)(droplet microfluidics)是一種借助微流控過(guò)程中互不相溶流體間相互作用來(lái)實(shí)現(xiàn)微乳液液滴制備及精確操控的技術(shù),在微混合、微反應(yīng)、生物封裝、功能材料制備、藥物運(yùn)輸與釋放等領(lǐng)域中極具發(fā)展前景,己成為國(guó)際上微流控技術(shù)領(lǐng)域發(fā)展的新熱點(diǎn)。乳液微流控過(guò)程中涉及系列復(fù)雜的界面現(xiàn)象及流體動(dòng)力學(xué)問(wèn)題,如乳液的形變、破碎及其間的相互作用(聚并、碰撞等)、多相離散與匯聚及其多界面演化等,直接影響到乳液微流控過(guò)程的操控精度與效率,從而決定了工程實(shí)際中乳液產(chǎn)品的外部形貌和內(nèi)部微結(jié)構(gòu)等重要品質(zhì)指標(biāo)。乳液體系的多相界面演化及流體動(dòng)力學(xué)行為機(jī)理已成為乳液微流控技術(shù)基礎(chǔ)研究的前沿?zé)狳c(diǎn)。液滴碰撞是液滴群乳液體系中液滴間相互作用的基本形式,特別是在液滴密集度高的情況下,液滴碰撞行為直接影響乳液液滴在流場(chǎng)中的形態(tài)演變。因此,充分認(rèn)識(shí)液滴碰撞動(dòng)力學(xué)行為,不僅對(duì)多相流體動(dòng)力學(xué)具有重要的學(xué)術(shù)價(jià)值,而且對(duì)乳液液滴精密調(diào)控也具有重要的現(xiàn)實(shí)意義。由于多界面間相互作用過(guò)程的復(fù)雜性,當(dāng)前有關(guān)微流控過(guò)程外流場(chǎng)中乳液液滴間碰撞行為研究仍處于起步階段,特別是具有多界面嵌套結(jié)構(gòu)的雙重乳液液滴間的相互碰撞特性及其內(nèi)在機(jī)理仍未得到充分揭示。為此,本文將采用實(shí)驗(yàn)觀測(cè)、理論分析、數(shù)值模擬相結(jié)合的研究方法,開展外流場(chǎng)內(nèi)單(雙)乳液液滴碰撞過(guò)程的動(dòng)力學(xué)行為的研究;赩OF相界面追蹤方法,建立了外流場(chǎng)內(nèi)不可壓縮單乳液液滴和雙乳液液滴碰撞過(guò)程的非穩(wěn)態(tài)模型,并設(shè)計(jì)搭建了剪切流場(chǎng)中單(雙)乳液液滴碰撞的高速可視化實(shí)驗(yàn)平臺(tái),結(jié)合數(shù)值模擬與可視化實(shí)驗(yàn),研究了剪切流場(chǎng)內(nèi)乳液液滴碰撞過(guò)程中液滴的形變及相互作用等動(dòng)力學(xué)行為,探討了單(雙)乳液液滴不同碰撞行為的產(chǎn)生機(jī)理及其演化特性,揭示了流場(chǎng)結(jié)構(gòu)、液滴尺寸、液滴結(jié)構(gòu)、液滴初始位置、流速等參數(shù)對(duì)乳液液滴碰撞動(dòng)力學(xué)行為的影響規(guī)律。概括起來(lái),本文的主要研究?jī)?nèi)容及研究結(jié)論如下:設(shè)計(jì)搭建剪切流場(chǎng)中單(雙)乳液液滴碰撞的高速可視化實(shí)驗(yàn)平臺(tái),觀察到乳液液滴特別是雙乳液液滴在剪切流場(chǎng)內(nèi)碰撞過(guò)程中所出現(xiàn)的兩類動(dòng)力學(xué)行為:掠過(guò)式碰撞行為和回轉(zhuǎn)式碰撞行為。掠過(guò)式碰撞行為的特點(diǎn)是隨著剪切流場(chǎng)開始作用,乳液液滴先變形為橢圓狀,隨后在流場(chǎng)拖曳力的作用下,液滴相互靠近并碰撞,直至液滴最終相互繞過(guò)對(duì)方,碰撞完成;剞D(zhuǎn)式碰撞行為的碰撞特點(diǎn)是隨著剪切流場(chǎng)開始作用,液滴先變形為橢圓狀,隨后在流場(chǎng)拖曳力的作用下,液滴相互靠近一段距離后,液滴各自回轉(zhuǎn)并沿與初始運(yùn)動(dòng)方向相反的方向相互脫離;赩OF液/液相界面追蹤方法的數(shù)值模擬復(fù)現(xiàn)了剪切流場(chǎng)中單(雙)乳液液滴的碰撞過(guò)程中出現(xiàn)的掠過(guò)式碰撞行為和回轉(zhuǎn)式碰撞行為。在乳液液滴碰撞的演化過(guò)程中明顯地觀察到了兩種不同的流動(dòng)區(qū)域,分別為橫掠流區(qū)域和回轉(zhuǎn)流區(qū)域。掠過(guò)式碰撞行為和回轉(zhuǎn)式碰撞行為形成的原因主要取決于橫掠流區(qū)域和回轉(zhuǎn)流區(qū)域各自對(duì)碰撞液滴拖曳作用的競(jìng)爭(zhēng)關(guān)系,即當(dāng)橫掠流區(qū)域的拖曳作用強(qiáng)于回轉(zhuǎn)流的拖曳作用時(shí),乳液液滴便出現(xiàn)掠過(guò)式碰撞行為,反之則出現(xiàn)回轉(zhuǎn)式碰撞行為。對(duì)比剪切流場(chǎng)內(nèi)單乳液液滴碰撞過(guò)程與雙乳液液滴碰撞過(guò)程中液滴動(dòng)力學(xué)行為之間的差異,揭示了內(nèi)液滴在液滴碰撞過(guò)程中存在著的"促形變"及"抑形變"機(jī)制。由于雙乳液液滴獨(dú)特的結(jié)構(gòu)特點(diǎn),雙乳液內(nèi)液滴的存在對(duì)外液滴的形變存在兩種影響機(jī)制:(a)內(nèi)外液滴界面形成了兩個(gè)"喉部","喉部"處的壓力小,使得頸部外界面處的壓力梯度減小,短軸方向上界面曲率半徑增加,雙乳液液滴往扁長(zhǎng)方向發(fā)展,促進(jìn)雙乳液液滴的拉伸形變;(b)內(nèi)液滴端部的高壓區(qū)向著外液滴的短軸方向靠近,雙乳液外液滴界面處壓力梯度會(huì)相應(yīng)增加,短軸方向上界面曲率半徑減小,雙乳液液滴向趨于球形趨勢(shì)發(fā)展,減小了液滴形變的伸長(zhǎng)量,抑制了雙乳液外液滴的拉伸形變。基于數(shù)值模擬與實(shí)驗(yàn)研究相結(jié)合的方法,探索了流場(chǎng)受限程度、流場(chǎng)流速、乳液液滴的初始位置以及乳液液滴的結(jié)構(gòu)尺寸等工況參數(shù)對(duì)單(雙)乳液液滴動(dòng)力學(xué)行為的定量影響規(guī)律。研究結(jié)果表明:(1)隨著剪切流場(chǎng)受限程度的增加,回轉(zhuǎn)流流動(dòng)區(qū)域在外流場(chǎng)所占的比例增加,乳液液滴暴露于回轉(zhuǎn)流流動(dòng)區(qū)域的份額增加,受到卷吸作用增強(qiáng),碰撞模式從掠過(guò)碰撞行為向回轉(zhuǎn)碰撞行為轉(zhuǎn)變;受限程度的增加,加速了乳液液滴的運(yùn)動(dòng),縮短了液滴間相互作用的時(shí)間,增大了乳液液滴在碰撞過(guò)程中軌跡偏向流場(chǎng)中心的偏移量,增大了乳液液滴的形變量;(2)隨著毛細(xì)數(shù)的增大,乳液液滴位于橫掠流區(qū)域的體積逐漸增加,液滴受到的拖曳力逐漸增大,當(dāng)液滴受到的拖曳力作用強(qiáng)于液滴所受到的卷吸作用時(shí),液滴的碰撞行為從回轉(zhuǎn)式向掠過(guò)式轉(zhuǎn)變;毛細(xì)數(shù)的增大,加速了乳液液滴的運(yùn)動(dòng),使得液滴碰撞過(guò)程所花費(fèi)的時(shí)間減小,并且流場(chǎng)剪切強(qiáng)度增大,增大了乳液液滴所受到的粘性剪切力,使得液滴在相互作用過(guò)程中被拉伸的形變量增大;(3)隨著兩個(gè)乳液液滴間初始間距增大,乳液液滴遠(yuǎn)離流場(chǎng)中的回轉(zhuǎn)流流動(dòng)區(qū)域,使得乳液液滴受到的拖曳力部分有所增加,乳液液滴的碰撞模式從回轉(zhuǎn)式碰撞行為向掠過(guò)式碰撞行為轉(zhuǎn)變;(4)隨著雙乳液內(nèi)外液滴半徑比增大,內(nèi)外液滴的形變趨勢(shì)從過(guò)阻尼振蕩向欠阻尼震蕩趨勢(shì)轉(zhuǎn)變,并且增加內(nèi)液滴尺寸會(huì)減小外液滴形變量而增大內(nèi)液滴形變量。本文采用實(shí)驗(yàn)觀測(cè)、理論分析、數(shù)值模擬相結(jié)合的研究方法,給出了剪切流場(chǎng)中兩個(gè)單(雙)乳液液滴在碰撞過(guò)程的不同動(dòng)力學(xué)行為并揭示了各自的形成機(jī)理,闡明了碰撞過(guò)程中單乳液與雙重乳液動(dòng)力學(xué)行為的差異,探明了內(nèi)液滴在乳液碰撞行為過(guò)程中的作用機(jī)制,掌握了流場(chǎng)受限程度、流場(chǎng)流速、乳液液滴的初始位置以及乳液液滴的結(jié)構(gòu)尺寸等工況參數(shù)對(duì)乳液液滴動(dòng)力學(xué)行為的定量影響規(guī)律。相關(guān)研究成果不僅對(duì)于深入揭示多相流體及其界面動(dòng)力學(xué)行為具有重要的學(xué)術(shù)意義,而且將為液滴微流控技術(shù)工藝的設(shè)計(jì)和優(yōu)化提供必要的理論及技術(shù)支撐。
[Abstract]:Emulsion system is widely used in the frontier science and technology fields such as energy, chemical, medical, and materials. Emulsion microfluidic technology (droplet microfluidics) is a technology for the preparation and precise manipulation of microemulsion droplets by the interaction of dissoluble fluids in the process of microfluidic control. Micromixing, microreaction, biological packaging, functional materials preparation, and drug preparation In the field of transportation and release, it has become a new hotspot in the field of international microfluidic technology. In the process of emulsion microfluidic, a series of complex interfacial phenomena and fluid dynamics are involved, such as the deformation, fragmentation and interaction (coalescence, collisions), multiphase dispersion and aggregation and the evolution of multi interface. And so on, it directly affects the control precision and efficiency of the emulsion microfluidic process, which determines the important quality indexes such as the external morphology and internal microstructure of the emulsion products in the engineering practice. The multi-phase interface evolution and the hydrodynamic behavior mechanism of the emulsion system have become the forefront of the research on the basic Research of the emulsion microfluidic technology. The basic form of droplet interaction in the droplet emulsion system, especially in the case of high droplet density, the droplet collision behavior directly affects the morphological evolution of the emulsion droplets in the flow field. Therefore, the full understanding of the dynamic behavior of droplets is not only of great academic value to the dynamic mechanics of multiphase fluid, but also to the emulsion liquid. Precision regulation also has important practical significance. Due to the complexity of the interaction process between multiple interfaces, the current research on the collision behavior of emulsion droplets in the flow field of the microfluidic process is still in the initial stage, especially the collision characteristics of the double emulsion droplets with multi interface nested structure and its inherent mechanism still have not yet been obtained. To this end, the dynamic behavior of single (double) emulsion droplet collision in the outflow field is studied by the method of experimental observation, theoretical analysis and numerical simulation. Based on the VOF phase interface tracing method, the instability of the collision process between the incompressible single emulsion droplets and the double emulsion droplets in the outflow field is established. A high speed visual experimental platform for single (double) emulsion droplet collision in the shear flow field is designed and built. The dynamic behavior of droplet deformation and interaction during the droplet collision process in the shear flow field is studied by combining numerical simulation and visualization experiments. The mechanism of the different collision behavior of single (double) emulsion droplets is discussed. The influence of flow structure, droplet size, droplet structure, droplet initial position, velocity and other parameters on the dynamic behavior of emulsion droplet collision is revealed. The main contents and conclusions of this paper are as follows: design and build a high-speed visual experimental platform for single (double) emulsion droplet collision in the shear flow field, Two kinds of dynamic behavior of the emulsion droplets, especially the double emulsion droplets, were observed during the collisions in the shear flow field: the passing type collision behavior and the rotary collision behavior. The characteristics of the skimming collision behavior are that the emulsion droplets first deform into ellipsoid with the beginning of the shear flow field, and then the droplets are carried out under the action of the drag force of the flow field. It is close and collided with each other until the drop of droplets eventually detours each other and collides with each other. The characteristic of the collision behavior is that with the beginning of the shear flow field, the droplets first deform into elliptical shape, and then the droplets turn each other near a distance under the action of the drag force of the flow field, and the droplets rotate each other along the opposite direction to the initial movement direction. The numerical simulation based on the VOF liquid / liquid phase interface tracing method is a numerical simulation of the swept over collision behavior and the rotary collision behavior during the collision process of the single (double) emulsion droplets in the shear flow field. In the evolution process of the emulsion droplet collision, two different flow regions are observed, respectively. The reasons for the formation of the swept over collision and the rotary collision mainly depend on the competitive relationship between the drag and drop of the droplets in the cross flow region and the rotational flow region, that is, when the drag effect of the cross flow region is stronger than the drag effect of the rotating flow, the drop of the liquid droplets will appear as a skimming collision, and vice versa. The difference between the single emulsion droplet collision process and the droplet dynamic behavior during the double emulsion droplet collision in the shear flow field is compared, and the mechanism of "deforming" and "deforming" in the process of droplet collision is revealed. There are two influence mechanisms in the external droplet deformation: (a) the internal and external droplet interface formed two "larynx", the pressure in the throat is small, the pressure gradient in the neck outside the interface is reduced, the radius of the curvature of the interface in the short axis increases, and the double emulsion droplets develop to the flat long square and promote the tensile deformation of the double emulsion droplets; (b) the end of the droplets inside (()) The pressure gradient in the high pressure area is close to the short axis of the external droplet, the pressure gradient at the interface of the double emulsion droplets will increase correspondingly, the radius of the curvature of the interface in the short axis decreases and the droplet direction of the double emulsion tends to be spherical, which reduces the elongation of the droplet deformation and inhibits the tensile deformation of the droplets outside the double emulsion. The quantitative influence of the flow field limitation, the flow velocity, the initial position of the emulsion droplet and the structure size of the emulsion droplets on the dynamic behavior of the single (double) emulsion droplets is explored. The results show that (1) the ratio of the flow area in the flow area is proportional to the increase of the limit of the shear flow field. In addition, the proportion of the emulsion droplets exposed to the flow area of the rotating flow is increased, and the volume of the emulsion droplets is enhanced. The collision mode changes from the collision behavior to the rotational collision behavior. The increase of the limitation degree accelerates the movement of the emulsion droplets, shortens the time between the droplet interaction and increases the trajectory bias of the emulsion droplet during the collision process. The displacement of the flow center increases the shape variable of the emulsion droplet; (2) with the increase of the capillary number, the volume of the droplet in the cross flow region increases gradually, the drag force of the droplet increases gradually. When the drag force of the droplet is stronger than that of the droplet, the collision behavior of the droplet is from the rotary to the sweep. The increase of the capillary number accelerates the movement of the emulsion droplets, reduces the time spent on the droplet collision process, and increases the shear strength of the flow field, increases the viscous shear force of the emulsion droplets, and increases the shape variables that are stretched during the interaction process; (3) as the initial spacing between the two emulsions increases, the droplets are increased. The droplet of the emulsion droplet is far away from the flow area in the flow field, which makes the drag force part of the emulsion droplet increase, and the collision mode of the emulsion droplet changes from the rotary collision to the swept over collision. (4) the deformation trend of the internal and external droplets from over damped oscillation to under damped oscillations with the increase of the radius ratio of the droplets inside and outside the double emulsion. In this paper, the different dynamic behavior of two single (double) emulsion droplets in the shear flow field is presented, and the formation mechanism of the droplets in the shear flow field is revealed, and the formation mechanism of the droplets in the shear flow field is revealed. The difference between the dynamic behavior of the single emulsion and the double emulsion during the collision was found. The mechanism of the internal droplet in the process of the emulsion collision was explored. The quantitative influence of the flow field limitation, the flow velocity, the initial position of the emulsion droplet and the structure size of the emulsion droplet on the dynamics of the emulsion droplet was grasped. The relevant research results not only have important academic significance to reveal the multi-phase fluid and its interfacial dynamic behavior, but also provide the necessary theoretical and technical support for the design and optimization of the liquid droplet microfluidic technology.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O35
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 繆國(guó)平,劉應(yīng)中;層結(jié)流體正交平行剪切流的不穩(wěn)定性[J];水動(dòng)力學(xué)研究與進(jìn)展(A輯);1990年03期
2 李明軍,高智;強(qiáng)粘性剪切流穩(wěn)定性方程組的簡(jiǎn)化及計(jì)算判據(jù)[J];工程數(shù)學(xué)學(xué)報(bào);2004年06期
3 侯映安;縫隙剪切流的流向問(wèn)題[J];液壓與氣動(dòng);1996年04期
4 孫立潭;再論層結(jié)流體平行剪切流的不穩(wěn)定性(Ⅰ)[J];水動(dòng)力學(xué)研究與進(jìn)展(A輯);1997年01期
5 宮兆新;魯傳敬;黃華雄;;二維細(xì)胞在剪切流中的運(yùn)動(dòng)特性[J];應(yīng)用力學(xué)學(xué)報(bào);2008年04期
6 蔣運(yùn)幸;謝錫麟;麻偉巍;;實(shí)驗(yàn)研究平面對(duì)稱剪切流中的螺旋渦[J];水動(dòng)力學(xué)研究與進(jìn)展A輯;2013年05期
7 趙漢中,翟大熙;大雷諾數(shù)線性剪切流繞圓柱的分離流動(dòng)[J];力學(xué)學(xué)報(bào);1990年04期
8 劉兆存,金忠青;二維平行壁面剪切流失穩(wěn)內(nèi)部流動(dòng)結(jié)構(gòu)初探[J];水利水電科技進(jìn)展;1995年03期
9 何鐘怡,史守峽;線性剪切流中大分子的動(dòng)力模型[J];哈爾濱建筑大學(xué)學(xué)報(bào);1999年01期
10 萬(wàn)占鴻;林建忠;孫志林;;三維剪切流場(chǎng)中纖維取向張量封閉格式的研究[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2008年01期
相關(guān)會(huì)議論文 前10條
1 趙紅亮;凌國(guó)燦;牛家玉;;非均勻尾跡型剪切流中的旋渦演化控制初步探索[A];第十屆全國(guó)分離流、旋渦和流動(dòng)控制會(huì)議論文集[C];2004年
2 蔣運(yùn)幸;謝錫麟;余飛龍;麻偉巍;;平面對(duì)稱剪切流中螺旋渦的實(shí)驗(yàn)研究[A];第十一屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第二十四屆全國(guó)水動(dòng)力學(xué)研討會(huì)并周培源誕辰110周年紀(jì)念大會(huì)文集(上冊(cè))[C];2012年
3 姜雪梅;董守平;王彥麗;劉國(guó)彪;張紅光;;粘性剪切流場(chǎng)中變形液滴的受力分析[A];第十一屆全國(guó)非線性振動(dòng)學(xué)術(shù)會(huì)議暨第八屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議論文摘要集[C];2007年
4 葛斐;王雷;陸維;洪友士;;剪切流中大長(zhǎng)細(xì)比圓柱體的二維渦激振動(dòng)[A];第九屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第二十二屆全國(guó)水動(dòng)力學(xué)研討會(huì)論文集[C];2009年
5 吳雪松;;剪切流中非線性超音速不穩(wěn)定波的發(fā)聲機(jī)理及特征[A];2003’全國(guó)流體力學(xué)青年研討會(huì)論文集[C];2003年
6 姜雪梅;董守平;王彥麗;劉國(guó)彪;張紅光;;粘性剪切流場(chǎng)中變形液滴的受力分析[A];第十一屆全國(guó)非線性振動(dòng)學(xué)術(shù)會(huì)議暨第八屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議論文集[C];2007年
7 劉兆存;肖勇;;二維平行壁面剪切流內(nèi)部結(jié)構(gòu)初探[A];第五屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第十五屆全國(guó)水動(dòng)力學(xué)研討會(huì)文集[C];2001年
8 邢超;羅紀(jì)生;;剪切流的氣動(dòng)聲學(xué)數(shù)值模擬中邊界處理的研究[A];2003空氣動(dòng)力學(xué)前沿研究論文集[C];2003年
9 凌國(guó)燦;趙紅亮;牛家玉;;兩類尾跡型剪切流中的旋渦位錯(cuò)[A];第十七屆全國(guó)水動(dòng)力學(xué)研討會(huì)暨第六屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議文集[C];2003年
10 俞煒;周持興;;黏彈性體系中液滴在剪切流場(chǎng)中凝聚的模擬研究[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(上)[C];2005年
相關(guān)博士學(xué)位論文 前7條
1 李靈杰;外加剪切流下三維磁重聯(lián)動(dòng)力學(xué)過(guò)程的研究[D];浙江大學(xué);2016年
2 王程遙;剪切流中乳液碰撞動(dòng)力學(xué)行為研究[D];東南大學(xué);2016年
3 李家輝;同時(shí)存在剪切磁場(chǎng)和剪切流的等離子體的不穩(wěn)定性研究[D];浙江大學(xué);2012年
4 陳誠(chéng);剪切流擾動(dòng)的瞬態(tài)增長(zhǎng)及其控制[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年
5 周林;可壓縮自由剪切流的線性穩(wěn)定性及噪聲機(jī)理研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2012年
6 李甘牛;撞擊剪切流的實(shí)驗(yàn)研究[D];南京航空航天大學(xué);2003年
7 謝錫麟;開放流場(chǎng)空間動(dòng)力學(xué)行為的一種實(shí)驗(yàn)研究框架及幾類經(jīng)典流場(chǎng)研究[D];復(fù)旦大學(xué);2005年
相關(guān)碩士學(xué)位論文 前9條
1 李子龍;明渠流條件下丁壩水流特性研究[D];上海交通大學(xué);2015年
2 乜云利;自容式湍流剖面觀測(cè)儀設(shè)計(jì)與試驗(yàn)研究[D];中國(guó)海洋大學(xué);2015年
3 莊秀玲;自由剪切流中相干結(jié)構(gòu)的非線性動(dòng)力學(xué)[D];天津大學(xué);2014年
4 徐田雨;剪切流傳感器與水下滑翔機(jī)集成應(yīng)用研究[D];天津大學(xué);2015年
5 張彥斌;振動(dòng)剪切流過(guò)濾過(guò)程及其強(qiáng)化性能的研究[D];大連理工大學(xué);2007年
6 邢超;剪切流中氣動(dòng)聲學(xué)的數(shù)值模擬研究[D];天津大學(xué);2003年
7 王慶亮;兩相剪切流霧化法微膠囊制備技術(shù)的機(jī)理、實(shí)驗(yàn)及應(yīng)用[D];南京理工大學(xué);2014年
8 李明遠(yuǎn);具有一類剪切背景流的強(qiáng)非線性長(zhǎng)波[D];內(nèi)蒙古大學(xué);2012年
9 陳寶闊;剪切流傳感器結(jié)構(gòu)優(yōu)化與性能測(cè)試[D];天津大學(xué);2012年
,本文編號(hào):2068556
本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/2068556.html