天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

Khovanov同調(diào)型理論的研究

發(fā)布時間:2018-03-23 19:20

  本文選題:Frobenius代數(shù) 切入點:配邊理論 出處:《大連理工大學》2016年博士論文


【摘要】:Khovanov同調(diào)是紐結Jones多項式不變量的范疇化。自從1999年M. Khovanov提出這個理論以來,它就一直被眾多的拓撲學者所關注。近年來,Khovanov同調(diào)理論已然取得了豐碩的研究成果。目前,關于此同調(diào)理論的進一步推廣以及計算問題是該領域研究的熱點。本文構造一個新的鏈環(huán)同調(diào)理論,它是原Khovanov同調(diào)理論的推廣,我們稱之為"Khovanov型”同調(diào)。對于這個新型的同調(diào)理論,我們給出詳細的幾何解釋,同時計算Kanenobu紐結的Khovanov同調(diào)及排叉結的Khovanov型同調(diào)。主要工作如下:1、對醍系數(shù)下Kanenobu紐結K(p,g)計算其Khovanov同調(diào),并得到一個遞推公式。計算結果表明:K(p,q)的Khovanov同調(diào)群的秩是關于p+q的函數(shù)。在計算過程中,我們使用紐結同調(diào)理論中基本的長正合列和一些關于Khovanov-thin紐結的結論。2、從構造一個Frobenius代數(shù)出發(fā),通過拓撲量子場論(TQFT)作用,逐步提出Khovanov型同調(diào)理論,進而得出此同調(diào)是一個紐結不變量。通過引進虧格生成算子,給出此同調(diào)的幾何解釋,證明Khovanov型同調(diào)是紐結的Jones多項式的范疇化,并計算了T2,k(k∈N)環(huán)面鏈環(huán)的Khovanov型同調(diào)。3、計算排又紐結P(-n,-m, m)一般環(huán)R上的Khovanov型同調(diào),并給出遞推公式。計算結果表明:排叉紐結P(-n,-m, m)的Khovanov型同調(diào)是一個關于n的紐結不變量。在計算過程中,通過解開交叉點的兩種方法找到同調(diào)生成元的來源,簡化了Khovanov型同調(diào)計算的復雜度,從而給出計算此種紐結鏈環(huán)同調(diào)的一種新方法。
[Abstract]:Khovanov homology is the categorization of knots Jones polynomials invariants. Since Khovanov put forward this theory in 1999, it has been concerned by many topologists. In recent years, Khovanov homology theory has made a lot of research results. In this paper, a new chain homology theory is constructed, which is a generalization of the original Khovanov homology theory. We call it "Khovanov type" homology. For this new homology theory, we give a detailed geometric explanation. At the same time, the Khovanov homology of Kanenobu knots and the Khovanov homology of row junction are calculated. The main work is as follows: 1. The Khovanov homology of Kanenobu knots is calculated for Kanenobu knots under the Khovanov coefficient. A recursive formula is obtained. The result shows that the rank of Khovanov homology group is a function of p Q. By using the basic long positive sequence in the homology theory of knots and some conclusions about Khovanov-thin knots, starting from the construction of a Frobenius algebra, we propose the homology theory of Khovanov type step by step through the action of topological quantum field theory. By introducing genus generating operator, the geometric explanation of homology is given, and it is proved that the homology of Khovanov type is the categorization of Jones polynomials of knots. We also calculate the homology of Khovanov type. 3 and the Khovanov type homology on the general ring R of T _ 2 K ~ K _ k 鈭,

本文編號:1654824

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/1654824.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶8e22c***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com