重磁位場(chǎng)數(shù)據(jù)空間重構(gòu)及層狀介質(zhì)反演研究
本文關(guān)鍵詞:重磁位場(chǎng)數(shù)據(jù)空間重構(gòu)及層狀介質(zhì)反演研究 出處:《吉林大學(xué)》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: Milne向下延拓法 Adams-Bashforth向下延拓法 Parker-Oldenburg反演 改進(jìn)迭代反演 Pade展開(kāi)反演
【摘要】:隨著重磁位場(chǎng)探測(cè)數(shù)據(jù)精度的提高和體量的增大,重磁位場(chǎng)數(shù)據(jù)空間重構(gòu),能夠充分挖掘?qū)崪y(cè)數(shù)據(jù)所蘊(yùn)含的地質(zhì)-地球物理信息,為地球物理勘探和國(guó)防建設(shè)提供至關(guān)重要的解釋依據(jù);另外,由于觀測(cè)范圍的拓寬和解釋深度的加深,重磁位場(chǎng)數(shù)據(jù)層狀介質(zhì)反演,對(duì)深部地質(zhì)構(gòu)造基礎(chǔ)理論研究和中深部工業(yè)找油找礦具體實(shí)際應(yīng)用有十分關(guān)鍵的指導(dǎo)作用。所以,重磁位場(chǎng)數(shù)據(jù)的空間重構(gòu)處理方法和層狀介質(zhì)反演解釋技術(shù)長(zhǎng)期受到專業(yè)人士重視,一直是重磁位場(chǎng)處理與解釋的經(jīng)典應(yīng)用方向和熱點(diǎn)研究問(wèn)題。但是,作為數(shù)據(jù)空間重構(gòu)關(guān)鍵途徑的向下延拓和作為層狀介質(zhì)反演主要方法的界面反演,卻存在著許多亟需解決的問(wèn)題。本文針對(duì)傳統(tǒng)向下延拓方法的下延深度淺、下延不穩(wěn)定、結(jié)果不準(zhǔn)等問(wèn)題,分別提出了基于微分方程數(shù)值解法的Milne下延法和Adams-Bashforth下延法,以獲得更令人滿意的重磁位場(chǎng)向下延拓結(jié)果;針對(duì)經(jīng)典Oldenburg界面反演方法中存在的高頻放大因子,引入新的迭代方式改善了Oldenburg反演的收斂性,為優(yōu)化密度界面反演提供了新思路;針對(duì)經(jīng)典Parker-Oldenburg正反演方法數(shù)值結(jié)果的不準(zhǔn)確問(wèn)題,本文利用Pade有理展開(kāi)替代泰勒展開(kāi),為解決磁性界面正反演提出了新方法。因此,以上述方法技術(shù)為根本,本文開(kāi)展如下研究:首先,由于延拓可以為輔助導(dǎo)航構(gòu)建重磁位場(chǎng)數(shù)據(jù)庫(kù),其中上延可以突出深部異常,下延可以突出淺部異常。重力場(chǎng)向上延拓過(guò)程是穩(wěn)定且收斂的,而其向下延拓不穩(wěn)定且發(fā)散。為此,本文提出新的重力場(chǎng)向下延拓方法——Milne下延法。先利用重力場(chǎng)及其垂向一階導(dǎo)數(shù),基于求解微分方程數(shù)值解法的Milne格式,推導(dǎo)出重力場(chǎng)向下延拓Milne公式;并將新推導(dǎo)的Milne下延法應(yīng)用于模型數(shù)據(jù),理論模型試驗(yàn)結(jié)果及其誤差曲線表明,相對(duì)于快速傅里葉變換下延法(FFT下延法)和積分迭代下延法,Milne下延法解決了下延深度淺、下延不穩(wěn)定和結(jié)果不準(zhǔn)確等問(wèn)題。Milne下延法的下延結(jié)果準(zhǔn)確,可完成5-10倍點(diǎn)距的大深度下延,無(wú)論數(shù)據(jù)中是否含有噪聲,下延過(guò)程都十分穩(wěn)定,且結(jié)果與真實(shí)值的相對(duì)誤差小;為驗(yàn)證實(shí)效性,本文將提出的Milne下延法應(yīng)用于加拿大Nechako盆地地區(qū)實(shí)測(cè)航空重力數(shù)據(jù),得到有效且準(zhǔn)確的下延結(jié)果,能夠識(shí)別和圈定一些細(xì)小的異常特征,為milne下延法的進(jìn)一步推廣應(yīng)用奠定基礎(chǔ)。其次,針對(duì)重磁位場(chǎng)向下延拓所存在的同樣不足,本文又給出了一種重力場(chǎng)向下延拓方法。首先,利用已知的重力場(chǎng)和重力垂向一階導(dǎo)數(shù),進(jìn)行向上延拓,得到若干個(gè)高度上重力場(chǎng)及其垂向?qū)?shù)的上延值;然后,基于微分方程多步線性解法的adams-bashforth格式,給出向下延拓adams-bashforth法;最后,為了檢驗(yàn)所推導(dǎo)的adams-bashforth下延法的應(yīng)用效果,分別將其對(duì)模型數(shù)據(jù)和實(shí)測(cè)數(shù)據(jù)進(jìn)行向下延拓。模型數(shù)據(jù)試驗(yàn)表明,與fft下延法和積分迭代下延法相比,本文三階adams-bashforth法的下延過(guò)程穩(wěn)定、下延深度大、邊界損失小、抗噪聲能力強(qiáng)、相對(duì)誤差小、結(jié)果準(zhǔn)確;加拿大nechako盆地地區(qū)航空實(shí)測(cè)數(shù)據(jù)試驗(yàn)表明,本文方法的重力場(chǎng)向下延拓結(jié)果穩(wěn)定且準(zhǔn)確,可以有效識(shí)別小尺度異常,恢復(fù)真實(shí)異常分布形態(tài)。同時(shí)還比較了四階adams-bashforth下延法和八階adams-bashforth下延法的向下延拓效果,模型試驗(yàn)和實(shí)際算例表明,高階adams-bashforth下延法可以獲得更好的下延結(jié)果。再者,oldenburg反演可以快速反算海量重磁位場(chǎng)數(shù)據(jù),確定地下深部界面的起伏和沉積盆地地層的分布。但是,對(duì)于高精度的測(cè)量數(shù)據(jù),作為經(jīng)典層狀介質(zhì)反演方法的oldenburg反演方法存在著發(fā)散性等問(wèn)題。針對(duì)經(jīng)典oldenburg反演存在的這一問(wèn)題,結(jié)合積分迭代下延方法,本文推導(dǎo)出收斂的、可用來(lái)優(yōu)化界面幾何形態(tài)的密度界面parker-oldenburg正反演改進(jìn)方法。本文提出的改進(jìn)迭代的parker-oldenburg正反演方法,在迭代過(guò)程中不需要低通濾波器或者其他壓制高頻技術(shù)。類比于將發(fā)散的向下延拓改寫為收斂的向上延拓的積分迭代下延法的迭代方式,本文主要采用正演反復(fù)迭代的方式,避免直接反演指數(shù)放大因子。本文利用其他地質(zhì)地球物理信息來(lái)確定反演初值,在迭代計(jì)算過(guò)程中不省略高階項(xiàng),從而保證了反演過(guò)程收斂且結(jié)果準(zhǔn)確。利用模型重力數(shù)據(jù),驗(yàn)證了該方法的優(yōu)越性;將改進(jìn)后的oldenburg反演方法應(yīng)用于中國(guó)青藏高原地區(qū),有效反演了該地區(qū)莫霍(moho)面深度起伏。最后,由于經(jīng)典頻率域(波數(shù)域)磁性層狀介質(zhì)正反演是利用泰勒(taylor)級(jí)數(shù)對(duì)指數(shù)函數(shù)展開(kāi),并進(jìn)行傅里葉變換(fouriertransform)而實(shí)現(xiàn),存在計(jì)算慢、精度低的問(wèn)題。因此,本文提出基于pade有理展開(kāi)替代泰勒級(jí)數(shù)展開(kāi)的磁性界面正反演方法。通過(guò)數(shù)學(xué)分析知,在展開(kāi)步長(zhǎng)大、展開(kāi)點(diǎn)鄰域無(wú)界的情況下,泰勒級(jí)數(shù)展開(kāi)不收斂,而對(duì)應(yīng)的Pade有理展開(kāi)收斂。與泰勒級(jí)數(shù)展開(kāi)相比較,Pade有理展開(kāi)收斂域更大更穩(wěn)定、逼近更準(zhǔn)確。因此,本文推導(dǎo)了Pade有理展開(kāi)替代泰勒級(jí)數(shù)展開(kāi)的磁性界面正反演表達(dá)式。模型試驗(yàn)驗(yàn)證了Pade有理展開(kāi)磁性界面正反演方法的有效性。應(yīng)用該方法對(duì)加拿大Matagami地區(qū)實(shí)測(cè)數(shù)據(jù)進(jìn)行反演,得到了比較穩(wěn)定、合理的地下磁性界面分布結(jié)果。
[Abstract]:With the increase of the gravity and magnetic field detection data to improve the accuracy and volume, the gravity and magnetic field data space reconstruction, can fully exploit the data contained in the geological - geophysical information and provide important basis for the interpretation of geophysical exploration and the construction of national defense; in addition, by observation and interpretation to broaden the range of depth, the gravity and magnetic field data inversion of layered medium, deep geological structure basic theory research and deep prospecting for oil industry specific application guidance is the key. Therefore, the reconstruction and processing technology of gravity and magnetic field data and layered media inversion technology have long been attached importance to by professionals. They have been the classic application directions and hot topics of gravity and magnetic field processing and interpretation. However, as the key way of data space reconstruction, the downward continuation and the interface inversion as the main inversion method of layered media still have many urgent problems to solve. According to the traditional method of downward continuation of the extension of shallow depth, extension of unstable and inaccurate results, are proposed. The numerical solution of differential equation Milne extension method and Adams-Bashforth. Based on this method, to obtain a more satisfactory potential field downward continuation results; for high frequency inversion method Oldenburg the classic interface in the amplification factor, improve the convergence of Oldenburg inversion iteration is introduced in new ways, provides a new idea for the optimization inversion of density interface; not accurate to solve the problem of classical Parker-Oldenburg inversion method of numerical results, this paper uses Pade rational expansion to replace Taylor, in order to solve the magnetic interface inversion method is proposed. Therefore, based on the above methods, the following research is carried out in this paper. First, because continuation can build a gravity and magnetic potential field database for auxiliary navigation, the upper part extension can highlight the deep anomaly, and the next extension can highlight the shallow anomaly. The upward continuation of the gravitational field is stable and convergent, while its downward continuation is unstable and divergent. To this end, a new downward continuation method of gravity field, Milne down method, is proposed in this paper. The first use of gravity field and vertical derivative, numerical solution of differential equation based on Milne format, derived from the gravity field downward continuation of the Milne formula; and a new derivation of the Milne extension method is applied to the model data, the results of theoretical model test and error curve shows that relative to the fast Fourier transform method (FFT. Under the extension method) and integral iteration continuation method, Milne extension method to solve the extension of shallow depth, extension of unstable and inaccurate result etc.. The Milne extension method and the extension is accurate, large depth can be completed 5-10 times from the extension, whether the data in the presence of noise, under the extension process are very stable, and the results and the real value of the relative error is small; in order to verify the effectiveness of the application of the extension method, this paper will put forward the Milne to take airborne gravity the measured data in the Nechako basin, effective and accurate results can be extended, abnormal feature recognition and delineation of some small, lay the foundation for further application of Milne extension method. Secondly, a downward continuation method of gravity field is given in this paper in view of the same shortcomings in the downward continuation of the gravity and magnetic field. First of all, using gravity field and gravity vertical to a known derivative of upward continuation of gravity field and vertical, get some height to the derivative of the extended value; then, the differential equation of multi step linear method based on Adams-Bashforth format, given the downward continuation Adams-Bashforth method; finally, to test the effect of the the derivation of the Adams-Bashforth extension method, respectively. The downward continuation of model data and measured data. The data shows that the model test, and the FFT extension method and integral iteration continuation method compared to the three order Adams-Bashforth method under the extension process is stable, decurrent depth, boundary loss, anti noise ability, small relative error, accurate results; tests for aviation data region of Canada nechako basin, gravity method the downward continuation of the stable and accurate, can effectively identify the small scale anomalies, abnormal distribution of real recovery. At the same time, we also compare the downward continuation effect of the four order Adams-Bashforth downward continuation method and the eight order Adams-Bashforth downward continuation method. Model tests and practical examples show that the higher order Adams-Bashforth downward continuation method can get better lower delay results. Furthermore, Oldenburg inversion can quickly calculate the data of massive gravity and magnetic field, determine the undulation of the deep underground interface and the distribution of sedimentary basin strata. However, for the high precision measurement data, the Oldenburg inversion method, as the classical inversion method of the classical layered medium, has the divergence and so on. Aiming at the problem of classical Oldenburg inversion, combined with the integral iteration downward continuation method, this paper deduces a convergent and improved parker-oldenburg interface method which can be used to optimize interface geometry. The improved iterative parker-oldenburg forward and inverse algorithm proposed in this paper does not require low pass filters or other suppression of high frequency techniques during the iterative process. It is analogous to rewriting the downward continuation of divergence into the iterative iteration method of the integral iteration for upward convergence of convergence. In this paper, we use forward iteration and iterative method to avoid direct inversion of exponential amplification factor. In this paper, we use other geophysics information to determine the initial value of inversion, and do not omit the higher-order terms in the iterative calculation process, so as to ensure the inversion process is convergent and the result is accurate. The superiority of the method is verified by using the model gravity data. The improved Oldenburg inversion method is applied to the Qinghai Tibet Plateau and effectively retrieved the depth fluctuation of Moho (Moho) surface in this area. Finally, due to the classical frequency domain (wavenumber domain), the forward and inversion of magnetic layered media is achieved by using Taylor (Taylor) series to expand the exponential function and perform Fourier transform (Fouriertransform), which is slow and precise.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:P631
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 康衡;;計(jì)算d軌道在配位場(chǎng)中的相對(duì)能量[J];湖南師范大學(xué)自然科學(xué)學(xué)報(bào);1981年01期
2 陳玉東;應(yīng)用連續(xù)復(fù)小波變換反演位場(chǎng)[J];地學(xué)前緣;2003年01期
3 吳健生;劉苗;;基于小波的位場(chǎng)數(shù)據(jù)融合[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年08期
4 陳生昌;林晨;李佩;;位場(chǎng)數(shù)據(jù)曲化平的迭代法[J];地球物理學(xué)進(jìn)展;2009年04期
5 安玉林;柴玉璞;張明華;黃金明;喬計(jì)花;;曲化平用最佳等效源模型及其單位位場(chǎng)表達(dá)式推導(dǎo)的新方法[J];地球物理學(xué)報(bào);2013年07期
6 ;位場(chǎng)會(huì)議[J];石油地球物理勘探;1976年S1期
7 雷林源;論位場(chǎng)垂向二階偏導(dǎo)數(shù)的幾何意義與物理實(shí)質(zhì)[J];桂林冶金地質(zhì)學(xué)院學(xué)報(bào);1981年02期
8 吳宣志;三維位場(chǎng)徑向譜與二維位場(chǎng)頻譜之間的等價(jià)原理[J];物探與化探;1982年04期
9 李慶宣;;付里葉變換域中位場(chǎng)資料的反演[J];世界地質(zhì);1986年03期
10 朱苗力;配位場(chǎng)微擾能級(jí)計(jì)算程序設(shè)計(jì)[J];吉首大學(xué)學(xué)報(bào)(自然科學(xué)版);1991年01期
相關(guān)會(huì)議論文 前10條
1 王西文;;位場(chǎng)反演中的雙次濾波技術(shù)研究[A];1991年中國(guó)地球物理學(xué)會(huì)第七屆學(xué)術(shù)年會(huì)論文集[C];1991年
2 潘作樞;王萬(wàn)銀;劉展;;曲面位場(chǎng)數(shù)據(jù)反演問(wèn)題[A];1996年中國(guó)地球物理學(xué)會(huì)第十二屆學(xué)術(shù)年會(huì)論文集[C];1996年
3 于增慧;王碩懦;;用樣條函數(shù)建立位場(chǎng)轉(zhuǎn)換系統(tǒng)和解釋方法研究[A];1996年中國(guó)地球物理學(xué)會(huì)第十二屆學(xué)術(shù)年會(huì)論文集[C];1996年
4 黃臨平;;改進(jìn)的模擬退火法在3D重磁位場(chǎng)反演中的應(yīng)用[A];2000年中國(guó)地球物理學(xué)會(huì)年刊——中國(guó)地球物理學(xué)會(huì)第十六屆年會(huì)論文集[C];2000年
5 吳健生;胡繞;;基于兩種方法混合的位場(chǎng)成像技術(shù)研究[A];中國(guó)地球物理學(xué)會(huì)第二十屆年會(huì)論文集[C];2004年
6 李淑玲;孫長(zhǎng)虹;孟小紅;;位場(chǎng)的小波分析研究進(jìn)展[A];勘探地球物理2005學(xué)術(shù)交流會(huì)論文集[C];2005年
7 劉光海;;位場(chǎng)轉(zhuǎn)換的譜分析方法及程序[A];中國(guó)地質(zhì)科學(xué)院礦床地質(zhì)研究所文集(21)[C];1988年
8 王俊;孟小紅;周俊杰;任麗;;位場(chǎng)數(shù)據(jù)反演中不適定性分析及改進(jìn)措施[A];中國(guó)地球物理2013——第十八專題論文集[C];2013年
9 管志寧;張培琴;姚長(zhǎng)利;;大數(shù)據(jù)量三維位場(chǎng)快速曲化平新方法[A];1999年中國(guó)地球物理學(xué)會(huì)年刊——中國(guó)地球物理學(xué)會(huì)第十五屆年會(huì)論文集[C];1999年
10 林巍;張健;;南海南部三維位場(chǎng)反演初步研究[A];中國(guó)地球物理2010——中國(guó)地球物理學(xué)會(huì)第二十六屆年會(huì)、中國(guó)地震學(xué)會(huì)第十三次學(xué)術(shù)大會(huì)論文集[C];2010年
相關(guān)博士學(xué)位論文 前10條
1 張沖;重磁位場(chǎng)數(shù)據(jù)空間重構(gòu)及層狀介質(zhì)反演研究[D];吉林大學(xué);2017年
2 張鳳琴;基于離散余弦變換的位場(chǎng)譜方法及應(yīng)用[D];吉林大學(xué);2007年
3 蔣甫玉;位場(chǎng)數(shù)據(jù)處理中的濾波技術(shù)研究及其應(yīng)用[D];吉林大學(xué);2008年
4 王彥國(guó);位場(chǎng)數(shù)據(jù)處理的高精度方法研究及應(yīng)用[D];吉林大學(xué);2013年
5 余海龍;位場(chǎng)異常三維視物性快速反演[D];浙江大學(xué);2009年
6 李宏偉;位場(chǎng)轉(zhuǎn)換計(jì)算中迭代法與其濾波特性的綜合分析與研究[D];中國(guó)地質(zhì)大學(xué)(北京);2012年
7 張志厚;位場(chǎng)向下延拓的數(shù)值計(jì)算方法[D];浙江大學(xué);2013年
8 劉彩云;基于小波變換的位場(chǎng)場(chǎng)源識(shí)別與異常分離方法研究[D];中國(guó)地質(zhì)大學(xué)(北京);2014年
9 馬國(guó)慶;位場(chǎng)(重&磁)及其梯度異常自動(dòng)解釋方法研究[D];吉林大學(xué);2013年
10 S. Morris Cooper(馬龍);利比里亞大陸架和盆地的重磁分析[D];中國(guó)地質(zhì)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 李超;現(xiàn)代數(shù)字信號(hào)處理技術(shù)在位場(chǎng)數(shù)據(jù)處理中的研究及應(yīng)用[D];成都理工大學(xué);2015年
2 熊登偉;重磁位場(chǎng)轉(zhuǎn)換方法研究及應(yīng)用[D];成都理工大學(xué);2016年
3 李玉鉸;位場(chǎng)提取方法研究及應(yīng)用[D];成都理工大學(xué);2016年
4 李春芳;空間域位場(chǎng)分離方法研究[D];長(zhǎng)安大學(xué);2011年
5 韓利;基于多尺度導(dǎo)數(shù)分析的位場(chǎng)數(shù)據(jù)處理解釋研究及應(yīng)用[D];西安石油大學(xué);2013年
6 劉金蘭;泰勒級(jí)數(shù)迭代曲面位場(chǎng)處理方法研究[D];長(zhǎng)安大學(xué);2004年
7 黃翼堅(jiān);等效源曲面位場(chǎng)處理和轉(zhuǎn)換方法研究[D];長(zhǎng)安大學(xué);2004年
8 谷社峰;局部波數(shù)在位場(chǎng)數(shù)據(jù)處理及解釋中的應(yīng)用[D];吉林大學(xué);2005年
9 陳X;空間散亂分布位場(chǎng)數(shù)據(jù)插值研究[D];浙江大學(xué);2013年
10 崔欣;位場(chǎng)相關(guān)成像方法研究[D];中國(guó)地質(zhì)大學(xué)(北京);2009年
,本文編號(hào):1338846
本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/1338846.html