礦用機(jī)電聯(lián)動(dòng)液控閘閥的設(shè)計(jì)研究
本文選題:機(jī)電聯(lián)動(dòng)液控閘閥 + 方案設(shè)計(jì) ; 參考:《太原理工大學(xué)》2017年碩士論文
【摘要】:閥門是管路流體運(yùn)送系統(tǒng)中的關(guān)鍵設(shè)備,廣泛應(yīng)用于石油、化工、建筑等多個(gè)領(lǐng)域,它在自動(dòng)化控制技術(shù)日益成熟的礦井排水系統(tǒng)中同樣占有舉足輕重的地位,其性能好壞直接影響整個(gè)排水系統(tǒng)的安全性和高效性。本文先對(duì)煤礦排水系統(tǒng)的基本組成結(jié)構(gòu)進(jìn)行了簡(jiǎn)要介紹,然后引出本文研究的重點(diǎn)排水組成設(shè)備——調(diào)節(jié)閘閥。介紹了當(dāng)前閘閥的基本類型和各自的結(jié)構(gòu)原理,對(duì)手動(dòng)閘閥、電動(dòng)閘閥、液控閘閥等不同閘閥的發(fā)展階段進(jìn)行了分析,指出了各閘閥所存在的不足和缺陷。針對(duì)目前閘閥存在的問(wèn)題提出了本課題的研究目的,即開(kāi)發(fā)設(shè)計(jì)一種適用于礦井排水系統(tǒng)中,能夠同時(shí)具有閘閥啟閉速度分別無(wú)級(jí)調(diào)節(jié)、斷電應(yīng)急工況下通過(guò)手搖離合裝置驅(qū)動(dòng)閘閥、液壓過(guò)載保護(hù)等多種功能的新型機(jī)電聯(lián)動(dòng)液控閘閥。本文針對(duì)礦井排水系統(tǒng)的具體工況,制定了調(diào)節(jié)閘閥的設(shè)計(jì)原則,對(duì)現(xiàn)有液控閘閥的執(zhí)行機(jī)構(gòu)方案進(jìn)行比較分析并最終確定了機(jī)電聯(lián)動(dòng)液控閘閥的總體設(shè)計(jì)方案。在模塊化設(shè)計(jì)方法的基礎(chǔ)上,確定了閘閥的油缸執(zhí)行機(jī)構(gòu)模塊、液壓控制集成模塊、機(jī)電聯(lián)動(dòng)模塊等,結(jié)合solidworks自底向上的建模思想完成了閘閥的參數(shù)化設(shè)計(jì)和裝配模型的建立,對(duì)其工作原理及特點(diǎn)進(jìn)行了詳細(xì)闡述。對(duì)機(jī)電聯(lián)動(dòng)液控閘閥的液壓系統(tǒng)進(jìn)行了設(shè)計(jì)及原理分析,對(duì)各液壓部件進(jìn)行了參數(shù)設(shè)計(jì)及選擇。為了獲得液壓缸外負(fù)載的變化情況,利用Fluent軟件對(duì)閘板在管道中受水流體介質(zhì)力的情況進(jìn)行了仿真分析,將得到的油缸外負(fù)載結(jié)果導(dǎo)入到液壓仿真軟件Automation Stdio中,對(duì)閘閥進(jìn)行了機(jī)電液聯(lián)合仿真,對(duì)其開(kāi)閥特性和雙向節(jié)流調(diào)速閥的性能進(jìn)行了仿真研究,驗(yàn)證了液壓系統(tǒng)設(shè)計(jì)的可靠性。開(kāi)發(fā)了一種適用于液控閘閥的手搖離合裝置,對(duì)其結(jié)構(gòu)進(jìn)行了設(shè)計(jì)。針對(duì)設(shè)計(jì)的虛擬樣機(jī)模型,首先利用ADAMS軟件進(jìn)行了動(dòng)力學(xué)仿真,對(duì)手搖變速箱的轉(zhuǎn)速及嚙合力進(jìn)行了理論計(jì)算和仿真驗(yàn)證,通過(guò)振動(dòng)仿真對(duì)虛擬模型的振動(dòng)原因進(jìn)行了研究,從動(dòng)力學(xué)角度驗(yàn)證了模型傳動(dòng)性能良好。其次,利用Ansys Workbench有限元分析軟件對(duì)手搖變速箱的重要部件行星架進(jìn)行了靜力學(xué)分析和模態(tài)仿真,證明了行星架結(jié)構(gòu)設(shè)計(jì)的合理性。對(duì)制造出的實(shí)體樣機(jī)進(jìn)行了基本功能試驗(yàn),包括液壓系統(tǒng)的保壓測(cè)試和手搖離合裝置的功能測(cè)試。在此基礎(chǔ)上,對(duì)手搖離合裝置進(jìn)行了振動(dòng)特性實(shí)驗(yàn)分析,包括實(shí)驗(yàn)?zāi)B(tài)測(cè)試和工作狀態(tài)下振動(dòng)頻率的測(cè)試,通過(guò)對(duì)實(shí)驗(yàn)數(shù)據(jù)分析,找到了可能引起該裝置振動(dòng)的原因,為裝置今后的結(jié)構(gòu)優(yōu)化提供了參考依據(jù)。
[Abstract]:Valve is the key equipment in the pipeline fluid transportation system. It is widely used in many fields, such as petroleum, chemical industry, construction and so on. It also plays an important role in the mine drainage system, which is becoming more and more mature in automatic control technology. Its performance directly affects the safety and efficiency of the whole drainage system. In this paper, the basic structure of coal mine drainage system is introduced briefly, and then the key drainage equipment of this paper, the regulating gate valve, is introduced. The basic types of gate valves and their structural principles are introduced. The development stages of different gate valves, such as manual gate valves, electric gate valves and hydraulic gate valves, are analyzed, and the shortcomings and defects of each gate valve are pointed out. In view of the problems existing in gate valves at present, the purpose of this paper is to develop and design a kind of stepless adjustment of gate valve opening and closing speed, which can be used in mine drainage system at the same time. A new type of electromechanical hydraulic gate valve with various functions, such as hydraulic overload protection and so on, is actuated by hand clutch device under emergency condition. According to the concrete working condition of mine drainage system, the design principle of regulating gate valve is established in this paper. The scheme of actuating mechanism of hydraulic gate valve is compared and analyzed, and the overall design scheme of electromechanical hydraulic gate valve is finally determined. On the basis of the modular design method, the hydraulic control integration module, the electromechanical linkage module and so on are determined. The parametric design and assembly model of the gate valve are completed with the bottom-up modeling idea of solidworks. The working principle and characteristics are described in detail. The hydraulic system of electromechanical linkage hydraulic gate valve is designed and its principle is analyzed. The parameters of hydraulic components are designed and selected. In order to obtain the change of the load outside the hydraulic cylinder, a simulation analysis was carried out by using fluent software to simulate the load of the sluice plate in the pipeline, and the result of the load outside the cylinder was imported into the hydraulic simulation software Automation Stdio. The electro-hydraulic simulation of gate valve is carried out, and the characteristics of opening valve and the performance of bidirectional throttling speed regulating valve are simulated. The reliability of hydraulic system design is verified. A hand clutch device suitable for hydraulic gate valve was developed and its structure was designed. Aiming at the designed virtual prototype model, the dynamic simulation is carried out by Adams software, and the rotational speed and meshing force of the hand gearbox are calculated and verified theoretically, and the vibration reasons of the virtual model are studied by vibration simulation. The model transmission performance is proved to be good from the dynamic point of view. Secondly, the statics analysis and modal simulation of the planetary frame, an important component of the manual gearbox, are carried out by using the Ansys Workbench finite element analysis software, which proves the rationality of the design of the planetary frame structure. The basic functional tests of the prototype are carried out, including the hydraulic system pressure control test and the manual clutch device function test. On this basis, the vibration characteristics of the handshake clutch device are analyzed experimentally, including the experimental modal test and the vibration frequency test in the working state. Through the analysis of the experimental data, the possible causes of the vibration of the device are found. It provides a reference for the structure optimization of the device in the future.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD442
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張文斌;顧海飛;馬群南;李兵;;液壓閘閥卡滯現(xiàn)象的機(jī)理分析與試驗(yàn)研究[J];排灌機(jī)械工程學(xué)報(bào);2016年07期
2 劉春玲;;磁力傳動(dòng)閘閥設(shè)計(jì)與分析[J];機(jī)電信息;2014年21期
3 郭俊波;張晶;;小口徑超臨界全鍛造閘閥的設(shè)計(jì)研究[J];企業(yè)技術(shù)開(kāi)發(fā);2014年17期
4 林躦;黃方平;;Automation Studio在液壓基本回路教學(xué)中的應(yīng)用[J];科技信息;2014年06期
5 郭濤;;水下采油樹(shù)中執(zhí)行機(jī)構(gòu)的設(shè)計(jì)及力學(xué)分析[J];河南科技;2014年01期
6 姚辰龍;陳來(lái)利;;RV減速器行星架的模態(tài)分析[J];機(jī)械工程師;2013年03期
7 潘國(guó)營(yíng);劉江明;王佩璐;;礦井排水資源化利用技術(shù)[J];河南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期
8 高奇峰;楊兆建;李澤松;李瑞;;礦井自動(dòng)排水系統(tǒng)液壓閘閥動(dòng)態(tài)特性分析[J];礦山機(jī)械;2009年09期
9 吳娟;寇子明;;電動(dòng)液控閘閥仿真分析[J];煤炭科學(xué)技術(shù);2009年02期
10 朱延紅;姚素芬;;基于Solidworks和CAXA電子圖板的漸開(kāi)線齒輪快速三維建模方法[J];陜西科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年05期
相關(guān)博士學(xué)位論文 前1條
1 林哲;閘閥內(nèi)部氣固兩相流動(dòng)及磨損研究[D];浙江大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 徐彪;行星齒輪減速器傳動(dòng)裝置分析與研究[D];長(zhǎng)安大學(xué);2015年
2 夏永;基于ADAMS的風(fēng)電齒輪箱動(dòng)力學(xué)仿真分析[D];大連理工大學(xué);2014年
3 張莉;煤礦井下主排水自控系統(tǒng)的設(shè)計(jì)[D];重慶大學(xué);2012年
4 楊龍;大功率行星減速器行星架特性分析及結(jié)構(gòu)優(yōu)化[D];中國(guó)艦船研究院;2011年
5 楊才洪;閘閥啟閉過(guò)程磨損機(jī)理及流場(chǎng)模擬分析[D];哈爾濱工程大學(xué);2011年
6 王旭;基于ADAMS非圓行星齒輪機(jī)構(gòu)運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)仿真[D];東北大學(xué);2010年
7 李杰;煤礦井下排水系統(tǒng)運(yùn)行可靠性研究與控制系統(tǒng)研制[D];太原理工大學(xué);2010年
8 張學(xué)亮;齒輪箱模態(tài)分析和結(jié)構(gòu)優(yōu)化方法研究[D];太原理工大學(xué);2010年
9 盛冬平;基于ANSYS的行星齒輪系統(tǒng)參數(shù)化建模與模態(tài)分析研究[D];南京航空航天大學(xué);2008年
10 李瑞;井下排水系統(tǒng)的監(jiān)測(cè)與控制研究[D];太原理工大學(xué);2006年
,本文編號(hào):2025023
本文鏈接:http://www.sikaile.net/shoufeilunwen/boshibiyelunwen/2025023.html