天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 工程碩士論文 >

泡排井采氣管道攜泡量監(jiān)測(cè)與消泡研究

發(fā)布時(shí)間:2018-04-24 11:23

  本文選題:泡排采氣 + 泡沫管流; 參考:《西南石油大學(xué)》2017年碩士論文


【摘要】:泡沫排水采氣工藝具有操作簡(jiǎn)便、適用范圍廣、成本低、效率高等優(yōu)勢(shì),在氣田開(kāi)采中的應(yīng)用非常廣泛。然而,采出天然氣攜帶大量泡沫進(jìn)入管道后,會(huì)引發(fā)管道內(nèi)積泡嚴(yán)重、分離器工作效率下降、堵塞匯管、調(diào)壓閥失效等現(xiàn)象,這是由于泡沫自身性質(zhì)復(fù)雜,管道內(nèi)混合流體流型不穩(wěn)定,泡沫監(jiān)測(cè)技術(shù)缺乏,消泡劑加注量難確定,分離器工作效率不佳引起的。因此,為了保證生產(chǎn)的高效穩(wěn)定,開(kāi)展管道攜泡量監(jiān)測(cè)與消泡研究,具有重要的工程意義。本文通過(guò)搭建泡排井采氣管道可視化實(shí)驗(yàn)裝置,模擬氣攜泡沫在管道中的流動(dòng)狀態(tài),觀察并分析了不同氣液比下不同因素對(duì)管道流體流動(dòng)特征影響以及對(duì)泡沫量與泡沫穩(wěn)定性的影響;基于紅外激光監(jiān)測(cè)原理,設(shè)計(jì)了管道攜泡量監(jiān)測(cè)裝置,并針對(duì)不同流型提出了泡沫流量計(jì)算模型,編寫(xiě)泡沫流量計(jì)算程序;通過(guò)模擬實(shí)驗(yàn)確定了消泡劑加注量影響因素,建立BP神經(jīng)網(wǎng)絡(luò)模型,對(duì)消泡劑最優(yōu)加注量進(jìn)行了成功預(yù)測(cè);基于旋流剪切、沖擊作用以及離心、重力作用設(shè)計(jì)了具有消泡功能的氣液分離裝置,通過(guò)實(shí)驗(yàn)手段驗(yàn)證了裝置的可行性和最佳使用流量。研究結(jié)果顯示:在氣、液、泡沫混合流動(dòng)的管道中,伴隨氣液比在0.63~143.62范圍內(nèi)增大,混合流體會(huì)依次出現(xiàn)滿(mǎn)管流、段塞流、環(huán)狀流、分層流四種典型流型;起泡基液濃度、溫度、管徑、管長(zhǎng)均對(duì)管中泡沫流量以及泡沫穩(wěn)定性造成不同程度的影響;監(jiān)測(cè)裝置具有良好的工作效果,可通過(guò)采集卡顯示圖像以及電壓值對(duì)管中流體流型進(jìn)行識(shí)別,流量計(jì)算模型具有較好的精確性,實(shí)驗(yàn)數(shù)據(jù)表明,泡沫流量計(jì)算誤差范圍在8.2%~15.1%;以氣流量、起泡基液濃度、溫度、管徑、管長(zhǎng)、管中泡沫量、壓力作為輸入變量的BP神經(jīng)網(wǎng)絡(luò)模型展示了良好的收斂速度和精確性,模型訓(xùn)練結(jié)果與實(shí)測(cè)值平均相對(duì)誤差為2.53%,預(yù)測(cè)結(jié)果與實(shí)測(cè)值之間平均相對(duì)誤差為7.58%;分離裝置模型表現(xiàn)出了較好的破泡效果與分離效果,在入口流量為6.5~9.5 L/min范圍時(shí),其破泡效率和分離效率均較高,可分別達(dá)到65%和90%以上,在實(shí)驗(yàn)條件下,裝置的最佳使用流量為8 L/min,在管道中加注消泡劑時(shí),該裝置表現(xiàn)出了更好的分離效果。本文的研究成果對(duì)泡排采氣現(xiàn)場(chǎng)管道中泡沫監(jiān)測(cè)、消泡劑加注量?jī)?yōu)化以及現(xiàn)場(chǎng)分離裝置設(shè)計(jì)具有一定指導(dǎo)意義。
[Abstract]:The foam drainage gas recovery process has the advantages of simple operation, wide application range, low cost and high efficiency, so it is widely used in gas field exploitation. However, if natural gas is produced to carry a large number of foam into the pipeline, it will lead to the serious accumulation of bubbles in the pipeline, the decline in the work efficiency of the separator, the blockage of the manifold and the failure of the pressure regulating valve. This is due to the complex nature of the foam itself. The flow pattern of the mixed fluid in the pipeline is unstable, the foam monitoring technology is lacking, the injection amount of defoamer is difficult to determine, and the work efficiency of the separator is not good. Therefore, in order to ensure the high efficiency and stability of production, it is of great engineering significance to carry out the monitoring and defoaming research of pipeline foam carrying capacity. In this paper, the flow state of gas carrying foam in pipeline is simulated by setting up a visual experimental device for gas production pipeline. The influence of different factors under different gas-liquid ratio on the flow characteristics of pipeline fluid and the influence on foam quantity and foam stability are observed and analyzed. Based on the principle of infrared laser monitoring, a monitoring device for pipe bubble carrying capacity is designed. According to different flow patterns, the foam flow calculation model is put forward, and the foam flow calculation program is compiled, and the influencing factors of defoamer dosage are determined through simulation experiments, and the BP neural network model is established, and the optimal injection amount of defoamer is successfully predicted. A gas-liquid separation device with defoaming function was designed based on swirl shear, impact, centrifugal and gravity effects. The feasibility and optimal flow rate of the device were verified by experimental means. The results show that in the gas, liquid and foam mixed flow pipe, with the increase of gas-liquid ratio in the range of 0.63 ~ 143.62, the mixing fluid will appear four typical flow patterns in turn: full pipe flow, slug flow, annular flow, stratified flow, bubble base liquid concentration, temperature, The diameter and length of the pipe have different effects on the foam flow rate and foam stability in the pipe. The monitoring device has a good working effect and can be used to identify the flow pattern of the fluid in the pipe by the image display and voltage value of the acquisition card. The experimental data show that the error range of foam flow calculation is 8.2and 15.1.The flow rate, bubble base fluid concentration, temperature, pipe diameter, pipe length and foam amount in pipe are calculated by gas flow rate, bubble base liquid concentration, temperature, pipe diameter, pipe length and foam amount in pipe. The BP neural network model with pressure as input variable shows good convergence speed and accuracy. The average relative error between the model training result and the measured value is 2.53, and the average relative error between the predicted result and the measured value is 7.58. Under the experimental conditions, the optimum flow rate of the device is 8 L / min. When the defoamer is added in the pipeline, the device shows better separation effect. The research results in this paper have a certain guiding significance for foam monitoring, defoamer injection optimization and field separation device design.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TE377

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 杜永春,李志恒;測(cè)定泡高及消泡時(shí)間實(shí)驗(yàn)裝置的改進(jìn)[J];大氮肥;2000年04期

2 方書(shū)起;李肖斌;雪金勇;;機(jī)械攪拌式發(fā)酵罐中的消泡技術(shù)研究與探討[J];化學(xué)工程;2009年05期

3 王文奇;張慶文;李軍慶;蔡子金;洪厚勝;;生物發(fā)酵過(guò)程中消泡方式的研究進(jìn)展[J];中國(guó)釀造;2013年02期

4 ;消泡[J];國(guó)外紡織技術(shù);1978年03期

5 高原義昌;王志蕙;;發(fā)酵槽內(nèi)消泡與最近的話(huà)題[J];江蘇食品與發(fā)酵;1979年Z1期

6 許達(dá)生,周美瑜;抄紙白水化學(xué)消泡試驗(yàn)[J];中國(guó)造紙;1982年03期

7 劉興允;;消泡和抑泡技術(shù)[J];江蘇化工;1982年02期

8 李惠仁;;消泡裝置[J];化工設(shè)備設(shè)計(jì);1987年02期

9 毛順聰,黃成英;豆制品消泡技術(shù)[J];精細(xì)化工;1988年05期

10 張建民;丁腈軟膠脫氣消泡試驗(yàn)[J];合成橡膠工業(yè);1988年05期

相關(guān)會(huì)議論文 前2條

1 王心敏;王振嘉;牛斌;呂玉海;劉洋;陳虎;張騰;高旺斌;;氣井井口固體消泡技術(shù)優(yōu)化與應(yīng)用[A];創(chuàng)新·質(zhì)量·低碳·可持續(xù)發(fā)展——第十屆寧夏青年科學(xué)家論壇石化專(zhuān)題論壇論文集[C];2014年

2 賈浩民;牛斌;任濤;寧梅;許飛;任發(fā)俊;陳虎;高崗;郝曉云;;靖邊氣田消泡工藝技術(shù)優(yōu)化研究[A];石化產(chǎn)業(yè)創(chuàng)新·綠色·可持續(xù)發(fā)展——第八屆寧夏青年科學(xué)家論壇石化專(zhuān)題論壇論文集[C];2012年

相關(guān)博士學(xué)位論文 前2條

1 吳飛;氟烷基改性聚硅氧烷的合成及消抑泡性能研究[D];南京理工大學(xué);2008年

2 亞爾巴(Yarbane El Houssein);泡沫鉆探消泡方法試驗(yàn)研究及泡沫攜巖屑能力數(shù)值模擬[D];吉林大學(xué);2012年

相關(guān)碩士學(xué)位論文 前10條

1 翁仁秀;水性建筑涂料的消泡性和展色性研究[D];復(fù)旦大學(xué);2014年

2 閻曉雨;泡排井集氣管道流動(dòng)特性及消泡實(shí)驗(yàn)研究[D];西南石油大學(xué);2016年

3 晏梓洋;泡排井采氣管道攜泡量監(jiān)測(cè)與消泡研究[D];西南石油大學(xué);2017年

4 李肖斌;錐孔式消泡槳消泡性能的試驗(yàn)研究[D];鄭州大學(xué);2008年

5 亞爾巴(Yarbane El Houssein);泡沫穩(wěn)定性及消泡方法的實(shí)驗(yàn)研究[D];吉林大學(xué);2007年

6 穆梟;三相泡沫穩(wěn)定性與消泡研究[D];中南大學(xué);2005年

7 周瀅;易起泡物系及其消泡構(gòu)件的研究[D];浙江工業(yè)大學(xué);2002年

8 趙利濤;原位氣泡拉伸法(ISBS)直接消泡工藝及裝備的研究[D];北京化工大學(xué);2010年

9 王珍;用于易起泡物料的新型蒸發(fā)室的研究[D];河北工業(yè)大學(xué);2011年

10 徐飛;天然氣脫硫用吸收劑MDEA溶液起泡成因及機(jī)理研究[D];東北石油大學(xué);2014年



本文編號(hào):1796423

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shoufeilunwen/boshibiyelunwen/1796423.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)d9ec5***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com