天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 碩博論文 > 工程碩士論文 >

基于電流信號的轉(zhuǎn)子系統(tǒng)故障診斷與采煤機截割工況識別

發(fā)布時間:2018-01-12 13:40

  本文關鍵詞:基于電流信號的轉(zhuǎn)子系統(tǒng)故障診斷與采煤機截割工況識別 出處:《太原理工大學》2017年碩士論文 論文類型:學位論文


  更多相關文章: 電機電流信號 轉(zhuǎn)子系統(tǒng) 故障診斷 特征提取 主成分分析 總體平均經(jīng)驗模態(tài)分解


【摘要】:隨著中國制造2025和工業(yè)4.0的提出,機械設備作為生產(chǎn)制造企業(yè)的核心裝備,發(fā)揮著舉足輕重的作用。為保證設備安全、可靠、高效地運行,避免惡性事故的發(fā)生和經(jīng)濟的損失,開展機械設備的故障診斷和運行狀態(tài)監(jiān)測,具有非常重要的意義。近年來,電機電流特征分析法作為一種新興檢測技術逐漸受到廣大學者青睞,通過監(jiān)測電機電流信號進行機械故障診斷和狀態(tài)識別已經(jīng)成為一個研究熱點,本文在此基礎上對電流信號的特征提取方法、轉(zhuǎn)子系統(tǒng)故障診斷和采煤機截割工況識別方法進行了探索研究,主要工作內(nèi)容如下:1、從理論角度分析了負載扭矩變化對電機電流信號的影響,負載扭矩波動體現(xiàn)在電機電流信號頻譜上會產(chǎn)生頻率調(diào)制現(xiàn)象,即電流基頻e0f兩側(cè)出現(xiàn)ieff?0的頻率分量。通過在Matlab/Simulink中建立電機模型,仿真驗證了理論的正確性。2、針對電機電流信號特征提取困難,特征頻率易被工頻湮沒的問題,將總體平均經(jīng)驗模態(tài)分解(EEMD)引入電流信號的處理中,利用改進小波閾值去噪、EEMD及互相關分析相結(jié)合方法對電流信號進行處理,通過在轉(zhuǎn)子試驗臺上施加正弦扭矩激勵來模擬扭矩變化,采集電機電流信號進行處理。試驗結(jié)果表明,利用互相關分析篩選IMF分量的方法,能夠快速有效地進行IMF分量的選取并抑制50Hz工頻及其諧波的干擾,提取扭矩波動的頻率,從而證明了該方法在實際應用中的可行性。3、針對轉(zhuǎn)子系統(tǒng)的不平衡、不對中故障,利用EEMD-PCA的方法提取電機電流信號的幅值域和時頻域特征參數(shù),在轉(zhuǎn)子系統(tǒng)故障模擬試驗臺上采集電機電流信號,利用BP神經(jīng)網(wǎng)絡和支持向量機對故障進行識別。試驗結(jié)果表明利用EEMD-PCA進行特征提取能夠有效提高識別效果,且EEMD-PCA-SVM識別準確率達到了93.4%,高于EEMD-PCA-BP的80.0%。4、針對采煤機截割過程中的煤巖工況識別問題,利用小波包能量法對電機電流信號進行特征提取,得到特征向量,再從特征向量和支持向量機參數(shù)兩個方面對識別算法進行優(yōu)化,試驗結(jié)果表明優(yōu)化后的PSO-SVM算法對不同滾筒轉(zhuǎn)速、不同截割高度下的煤巖截割工況識別率均達到了90%以上,效果比較理想。
[Abstract]:With the development of manufacture in China 2025 and 4.0, mechanical equipment, as the core equipment of manufacturing enterprises, plays an important role in order to ensure the safety, reliability and efficient operation of the equipment. In recent years, it is very important to avoid the occurrence of malignant accidents and economic losses, and to carry out fault diagnosis and operation state monitoring of machinery and equipment. As a new detection technology, the motor current characteristic analysis method has gradually been favored by the majority of scholars. Mechanical fault diagnosis and state identification by monitoring the motor current signal has become a research hotspot. In this paper, the current signal feature extraction method, rotor system fault diagnosis and shearer cutting condition identification methods are explored and studied. The main work is as follows: 1. The influence of load torque variation on motor current signal is analyzed theoretically. Load torque fluctuation is reflected in the frequency modulation phenomenon in the frequency spectrum of motor current signal, that is, ieffs appear on both sides of current base frequency e0f. By establishing the motor model in Matlab/Simulink, the correctness of the theory is verified by simulation. It is difficult to extract the characteristics of the motor current signal. The characteristic frequency is easy to be annihilated by power frequency. The total average empirical mode decomposition (EEMD) is introduced into the current signal processing, and the improved wavelet threshold is used to de-noise. The current signal is processed by EEMD and cross-correlation analysis. The torque change is simulated by applying sinusoidal torque excitation on the rotor test-bed, and the motor current signal is collected for processing. The test results show that. By using the method of cross-correlation analysis to select IMF components, the selection of IMF components can be carried out quickly and effectively, and the interference of 50Hz power frequency and its harmonics can be suppressed, and the frequency of torque fluctuation can be extracted. It is proved that the method is feasible in practical application. The method is aimed at the unbalance of rotor system and misalignment fault. The amplitude range and time-frequency characteristic parameters of motor current signal are extracted by EEMD-PCA method, and the motor current signal is collected on the rotor system fault simulation test platform. BP neural network and support vector machine are used to identify the fault. The experimental results show that the feature extraction using EEMD-PCA can effectively improve the recognition effect. The accuracy of EEMD-PCA-SVM recognition is 93.4, which is higher than that of EEMD-PCA-BP (80.0.4). The wavelet packet energy method is used to extract the feature of the motor current signal and the eigenvector is obtained. Then the recognition algorithm is optimized from two aspects: the eigenvector and the support vector machine parameters. The experimental results show that the optimized PSO-SVM algorithm can recognize the cutting conditions of coal and rock at different drum speed and cutting height, and the recognition rate of coal and rock cutting conditions is more than 90%, and the effect is satisfactory.
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TD421.6

【參考文獻】

相關期刊論文 前10條

1 孫鵬;曹雨晨;劉洋;李靜;;采用二進制蟻群模糊神經(jīng)網(wǎng)絡的配電網(wǎng)故障分類方法[J];高電壓技術;2016年07期

2 賈朱植;楊理踐;祝洪宇;宋向金;;時變轉(zhuǎn)速運行狀態(tài)下鼠籠電機轉(zhuǎn)子斷條故障診斷[J];儀器儀表學報;2016年04期

3 張?zhí)熨n;龐新宇;楊兆建;;自適應小波閾值融合去噪法對采煤機振動信號的處理[J];太原理工大學學報;2016年02期

4 許允之;仝年;韓麗;胡X;;基于粒子群優(yōu)化LS-WSVM的電機斷條故障診斷[J];華北電力大學學報(自然科學版);2016年01期

5 史麗萍;湯家升;王攀攀;韓麗;張曉蕾;;采用最優(yōu)小波樹和改進BP神經(jīng)網(wǎng)絡的感應電動機定子故障診斷[J];電工技術學報;2015年24期

6 楊明;李廣;董傳洋;柴娜;徐殿國;;基于電機定子電流的齒輪故障診斷方法[J];北京交通大學學報;2015年05期

7 閆濤;趙文俊;胡秀潔;宋家友;;基于信息融合技術的航空電子設備故障診斷研究[J];電子科技大學學報;2015年03期

8 郭華;羅建;宮秀芳;徐斌;時獻江;;風力發(fā)電機齒輪故障診斷仿真與模擬試驗[J];振動.測試與診斷;2015年02期

9 賈峰;武兵;熊曉燕;熊詩波;;基于EMD與多重分形去趨勢法的軸承智能診斷方法[J];中南大學學報(自然科學版);2015年02期

10 陽同光;桂衛(wèi)華;;基于瞬時無功功率感應電機轉(zhuǎn)子斷條故障診斷研究[J];電機與控制學報;2014年09期

相關博士學位論文 前3條

1 陽同光;HXD1型電力機車異步牽引電機故障診斷方法研究[D];中南大學;2013年

2 張郁山;希爾伯特—黃變換(HHT)與地震動時程的希爾伯特譜[D];中國地震局地球物理研究所;2003年

3 任芳;基于多傳感器數(shù)據(jù)融合技術的煤巖界面識別的理論與方法研究[D];太原理工大學;2003年

相關碩士學位論文 前3條

1 劉萬太;變頻調(diào)速異步電機的設計與分析[D];湖南工業(yè)大學;2011年

2 陳娟;磁懸浮轉(zhuǎn)子集成設計系統(tǒng)研究[D];武漢理工大學;2007年

3 黃永平;Hilbert-Huang變換及其若干改進研究[D];哈爾濱工程大學;2007年

,

本文編號:1414524

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shoufeilunwen/boshibiyelunwen/1414524.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7226e***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com