天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 社科論文 > 心理論文 >

MIRT補(bǔ)償模型與非補(bǔ)償模型的比較研究及其應(yīng)用

發(fā)布時(shí)間:2019-02-19 17:33
【摘要】:本文通過使用BMIRT軟件,設(shè)置不同的實(shí)驗(yàn)條件:被試樣本量(1000和3000)×題目量(25和50)×能力相關(guān)(0.3和0.7),模擬生成多維三參數(shù)補(bǔ)償數(shù)據(jù)和非補(bǔ)償數(shù)據(jù),并用多維三參數(shù)補(bǔ)償模型和非補(bǔ)償模型進(jìn)行參數(shù)估計(jì)。通過比較項(xiàng)目參數(shù)和能力參數(shù)的RMSE值,,實(shí)現(xiàn)各種實(shí)驗(yàn)條件下的多維補(bǔ)償模型與非補(bǔ)償模型的參數(shù)返真性比較。結(jié)果發(fā)現(xiàn),無論是估計(jì)多維補(bǔ)償數(shù)據(jù)還是非補(bǔ)償數(shù)據(jù),三參數(shù)多維補(bǔ)償模型的參數(shù)返真性都比三參數(shù)多維非補(bǔ)償模型的參數(shù)返真性更好。尤其當(dāng)估計(jì)多維補(bǔ)償數(shù)據(jù)時(shí),三參數(shù)多維補(bǔ)償模型估計(jì)的能力參數(shù)RMSE值幾乎是三參數(shù)多維非補(bǔ)償模型的一半,顯著優(yōu)于三參數(shù)非補(bǔ)償模型估計(jì)的能力參數(shù)返真性。 本研究還將多維項(xiàng)目反應(yīng)理論補(bǔ)償模型與非補(bǔ)償模型應(yīng)用于瑞文高級(jí)推理測驗(yàn)中,發(fā)現(xiàn)多維補(bǔ)償模型比多維非補(bǔ)償模型擬合的更好。本研究使用多維項(xiàng)目反應(yīng)理論補(bǔ)償模型對(duì)高級(jí)瑞文推理測驗(yàn)進(jìn)行深入分析,探究瑞文高級(jí)推理測驗(yàn)的各題目質(zhì)量、難度及主要測量的認(rèn)知成分,結(jié)果發(fā)現(xiàn)瑞文高級(jí)推理測驗(yàn)的整體區(qū)分度較好,并且項(xiàng)目難度幾乎隨著題序增大而增大。在五個(gè)能力維度上,瑞文高級(jí)推理測驗(yàn)試題的認(rèn)知成分難度按A/S、CR、PP、D3和D2依次遞增。最后,在多維補(bǔ)償模型與非補(bǔ)償模型對(duì)瑞文高級(jí)推理測驗(yàn)的被試能力參數(shù)估計(jì)的基礎(chǔ)上,對(duì)被試在解決瑞文高級(jí)推理測驗(yàn)項(xiàng)目時(shí)能力間的相互作用進(jìn)行了探索性分析,結(jié)果發(fā)現(xiàn)被試在解決瑞文高級(jí)推理測驗(yàn)項(xiàng)目時(shí),CR、PP以及D3能力之間存在相互補(bǔ)償關(guān)系,A/S與D2能力之間也存在相互補(bǔ)償關(guān)系。 最后,本文指出了該研究的不足,并對(duì)未來的研究提出展望。
[Abstract]:In this paper, by using BMIRT software, we set up different experimental conditions: sample size (1000 and 3000) 脳 subject quantity (25 and 50) 脳 ability correlation (0. 3 and 0. 7) to simulate the generation of multi dimensional three parameter compensation data and non compensation data. The multi-dimensional three parameter compensation model and the non-compensation model are used to estimate the parameters. By comparing the RMSE values of the project parameters and the capability parameters, the parameter fidelity comparison between the multi-dimensional compensation model and the non-compensation model under various experimental conditions is realized. The results show that the parametric fidelity of the three-parameter multi-dimensional compensation model is better than that of the three-parameter multi-dimensional non-compensation model, regardless of whether it is the estimation of the multi-dimensional compensation data or the non-compensated data. In particular, when estimating multidimensional compensation data, the capability parameter RMSE estimated by the three-parameter multi-dimensional compensation model is almost half of that of the three-parameter multi-dimensional non-compensation model, which is significantly better than the capability parameter fidelity of the three-parameter non-compensation model estimation. The multi-dimensional item response theory compensation model and the non-compensation model are also applied to the Raven advanced reasoning test. It is found that the multidimensional compensation model fits better than the multidimensional non-compensation model. In this study, the multidimensional item response theory compensation model was used to deeply analyze the advanced Raven reasoning test, and to explore the quality, difficulty and cognitive components of the Raven advanced reasoning test. The results show that the overall classification of Raven advanced reasoning test is good and the project difficulty increases with the increase of item order. In the five ability dimensions, the difficulty of cognitive components in the Raven Advanced reasoning Test was increased by A / S / C / PPD _ 3 and D _ 2 respectively. Finally, on the basis of multi-dimensional compensation model and non-compensation model to estimate the ability parameters of the Raven advanced reasoning test, the interaction between the ability of the participants in solving the Raven advanced reasoning test items is analyzed. The results show that there is a mutual compensation relationship between CR,PP and D3 ability and between A / S and D _ 2 ability in solving Raven advanced reasoning test items. Finally, this paper points out the deficiency of this research and puts forward the prospect of future research.
【學(xué)位授予單位】:江西師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:B841

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 戴海崎,劉聲濤;瑞文測驗(yàn)項(xiàng)目認(rèn)知難度因素分析及LLTM擬合驗(yàn)證[J];心理與行為研究;2004年02期

2 黎光明;張敏強(qiáng);;先驗(yàn)信息對(duì)MCMC方法估計(jì)概化理論方差分量變異量的影響[J];統(tǒng)計(jì)與決策;2012年07期

3 翟洪昌;瑞文高級(jí)推理測驗(yàn)國家公務(wù)員測試結(jié)果的分析[J];心理科學(xué);1999年02期

4 甘媛源;余嘉元;;改進(jìn)3PL模型參數(shù)估計(jì)的MCMC算法[J];心理科學(xué);2010年05期

5 陳德枝;戴海琦;丁樹良;;基于IRT模型的兒童圖形推理能力動(dòng)態(tài)評(píng)估研究[J];心理科學(xué);2011年01期

6 張敏強(qiáng);簡小珠;陳秋梅;;規(guī)則空間模型在瑞文智力測驗(yàn)中的認(rèn)知診斷分析[J];心理科學(xué);2011年02期

7 張厚粲,王曉平;瑞文標(biāo)準(zhǔn)推理測驗(yàn)在我國的修訂[J];心理學(xué)報(bào);1989年02期

8 羅照盛,漆書青,戴海琦,丁樹良;項(xiàng)目反應(yīng)理論多級(jí)記分模型參數(shù)估計(jì)的實(shí)現(xiàn)[J];心理學(xué)報(bào);2003年04期

9 肖瑋;苗丹民;朱寧寧;張青華;;應(yīng)用項(xiàng)目反應(yīng)理論創(chuàng)建圖形推理測驗(yàn)題庫[J];心理學(xué)報(bào);2006年06期

10 李中權(quán);王力;張厚粲;周仁來;;不同認(rèn)知成分在圖形推理測驗(yàn)項(xiàng)目難度預(yù)測中的作用[J];心理學(xué)報(bào);2011年09期

相關(guān)博士學(xué)位論文 前3條

1 劉聲濤;幾何類比推理測驗(yàn)用于認(rèn)知診斷的可行性研究[D];江西師范大學(xué);2007年

2 周駿;矩陣完成問題的項(xiàng)目生成研究[D];江西師范大學(xué);2008年

3 付志慧;多維項(xiàng)目反應(yīng)模型的參數(shù)估計(jì)[D];吉林大學(xué);2010年



本文編號(hào):2426709

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shekelunwen/xinlixingwei/2426709.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶58abd***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com