混合回歸模型的變點(diǎn)檢測(cè)
[Abstract]:The arrival of big data era has produced a wealth of data, but how to effectively detect the abnormal mutation in the data has attracted people's attention. Change-point detection technology is undoubtedly one of the most effective methods to solve this problem. It has been widely used in economics, climate simulation, biomedicine, anti-terrorist security inspection and other fields, which has important research significance. However, the data model with time series autoregressive effect and covariable linear regression effect, that is, the mixed regression model proposed in this paper, has rarely been involved in the literature. This paper plans to study the problem of change point detection in mixed regression model. In this paper, some classical literatures are reviewed briefly, and the simple mean model, autoregressive model and regression model are analyzed and summarized, and a new model, that is, mixed regression model, is constructed. Then, the least square method with penalty is used to estimate the model parameters. Considering the sparsity of the change point, we transform the variable selection problem into the variable selection problem with the help of Group Lasso (Least absolute shrinkage and selection operator) technique. At the same time, we give a coordinate descent algorithm for finding the change point. Then, the method of change point detection in mixed regression model is given, that is, the detection statistics are proposed, and the corresponding statistical properties and theoretical proof are given under certain conditions. Finally, the data simulation is used to further analyze and explain. The main conclusions of this paper are as follows: under given conditions, the number of change points is estimated to be not less than the number of real change points. The estimation of the position of the change point is consistent with the real position, the estimation of the model parameter is consistent with the real parameter (that is, under given conditions, The absolute value of the difference between the estimation of the position of the change point and the real position or the estimation of the model parameters and the real parameter can be limited to a certain range. If the number of change points is not less than the number of real change points, the set of change point estimators is consistent with the set of real change points, and under the given information criterion, the estimation of the number of change points related only to the adjustment parameters of the model tends to the number of real change points according to probability 1. The simulation results show that the hybrid regression model can detect the position and number of change points more accurately than the existing three models, and the stability is high and the advantages are obvious.
【學(xué)位授予單位】:廣西師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:C81
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳希孺;變點(diǎn)統(tǒng)計(jì)分析簡(jiǎn)介[J];數(shù)理統(tǒng)計(jì)與管理;1991年01期
2 王黎明;變點(diǎn)統(tǒng)計(jì)分析問(wèn)題及其應(yīng)用[J];內(nèi)蒙古統(tǒng)計(jì);2004年03期
3 王黎明;;三種變點(diǎn)問(wèn)題理論及其應(yīng)用[J];泰山學(xué)院學(xué)報(bào);2007年06期
4 王景樂(lè);劉維奇;;時(shí)間序列中方差的結(jié)構(gòu)變點(diǎn)的小波識(shí)別(英文)[J];應(yīng)用概率統(tǒng)計(jì);2010年02期
5 廖遠(yuǎn)u&;朱平芳;;均值和方差雙重變點(diǎn)的貝葉斯偵測(cè)[J];統(tǒng)計(jì)研究;2011年11期
6 陳希孺;變點(diǎn)統(tǒng)計(jì)分析簡(jiǎn)介[J];數(shù)理統(tǒng)計(jì)與管理;1991年02期
7 陳希孺;變點(diǎn)統(tǒng)計(jì)分析簡(jiǎn)介(Ⅳ)局部比較法[J];數(shù)理統(tǒng)計(jì)與管理;1991年04期
8 王黎明;變點(diǎn)統(tǒng)計(jì)分析的研究進(jìn)展[J];統(tǒng)計(jì)研究;2003年01期
9 鄧薇;熊波;黃黎康;;位置參數(shù)變點(diǎn)的統(tǒng)計(jì)推斷[J];統(tǒng)計(jì)與信息論壇;2010年07期
10 譚智平;只有一個(gè)變點(diǎn)模型的跳變度和坡變度的聯(lián)合分布[J];衡陽(yáng)師專(zhuān)學(xué)報(bào)(自然科學(xué));1996年06期
相關(guān)會(huì)議論文 前3條
1 陳惠;湯銀才;;已知變點(diǎn)數(shù)下二次回歸模型方差變點(diǎn)分析[A];中國(guó)現(xiàn)場(chǎng)統(tǒng)計(jì)研究會(huì)第12屆學(xué)術(shù)年會(huì)論文集[C];2005年
2 汪永新;;短樣本多指標(biāo)動(dòng)態(tài)經(jīng)濟(jì)數(shù)據(jù)變點(diǎn)的識(shí)別方法[A];中國(guó)現(xiàn)場(chǎng)統(tǒng)計(jì)研究會(huì)第九屆學(xué)術(shù)年會(huì)論文集[C];1999年
3 李強(qiáng);王黎明;王文雯;;基于中國(guó)股市行業(yè)收益率面板數(shù)據(jù)的貝葉斯方法變點(diǎn)檢測(cè)[A];中國(guó)系統(tǒng)工程學(xué)會(huì)第十八屆學(xué)術(shù)年會(huì)論文集——A13其他管理領(lǐng)域的創(chuàng)新研究成果問(wèn)題[C];2014年
相關(guān)博士學(xué)位論文 前9條
1 張立文;分位數(shù)回歸中變點(diǎn)問(wèn)題的若干研究[D];復(fù)旦大學(xué);2014年
2 王丹;重尾序列與非參數(shù)回歸模型的變點(diǎn)分析[D];西北大學(xué);2014年
3 李拂曉;幾類(lèi)時(shí)間序列模型變點(diǎn)監(jiān)測(cè)與檢驗(yàn)[D];西北工業(yè)大學(xué);2015年
4 譚常春;變點(diǎn)問(wèn)題的統(tǒng)計(jì)推斷及其在金融中的應(yīng)用[D];中國(guó)科學(xué)技術(shù)大學(xué);2007年
5 韓四兒;兩類(lèi)厚尾相依序列的變點(diǎn)分析[D];西北工業(yè)大學(xué);2007年
6 董翠玲;測(cè)量誤差模型方差變點(diǎn)的統(tǒng)計(jì)推斷[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
7 聶維琳;變點(diǎn)靠近序列端點(diǎn)的檢測(cè)問(wèn)題[D];武漢大學(xué);2010年
8 趙華玲;逐段線(xiàn)性回歸中變點(diǎn)問(wèn)題的統(tǒng)計(jì)推斷[D];武漢大學(xué);2011年
9 王景樂(lè);非參數(shù)模型中變點(diǎn)的檢測(cè)及刪失數(shù)據(jù)中刪失指標(biāo)隨機(jī)缺失下回歸函數(shù)的估計(jì)[D];復(fù)旦大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 陳少夢(mèng);基于Cucconi檢驗(yàn)及變點(diǎn)模型的非參數(shù)統(tǒng)計(jì)質(zhì)量控制圖研究[D];浙江大學(xué);2015年
2 劉俐;基于變點(diǎn)—模糊理論的龍灘水庫(kù)汛期分期調(diào)度研究[D];廣西大學(xué);2015年
3 劉晉芳;多元正態(tài)向量均值變點(diǎn)在線(xiàn)監(jiān)測(cè)[D];山西大學(xué);2015年
4 王新喬;半?yún)?shù)面板回歸模型的變點(diǎn)分析[D];大連理工大學(xué);2015年
5 樊慶祝;基于貝葉斯分析理論的快遞業(yè)務(wù)量變點(diǎn)研究[D];廣西師范學(xué)院;2015年
6 呂會(huì)琴;厚尾相依序列變點(diǎn)Ratio檢驗(yàn)[D];西安工程大學(xué);2016年
7 侯炳山;面板數(shù)據(jù)中均值與方差的斷點(diǎn)分析[D];浙江大學(xué);2016年
8 李明宇;面板數(shù)據(jù)AR(1)模型的變點(diǎn)分析[D];浙江大學(xué);2016年
9 張瑞紅;基于局部多項(xiàng)式回歸的時(shí)間序列變點(diǎn)檢測(cè)[D];南京大學(xué);2016年
10 任好好;基于變點(diǎn)監(jiān)測(cè)的VaR度量方法研究[D];山東大學(xué);2016年
,本文編號(hào):2408629
本文鏈接:http://www.sikaile.net/shekelunwen/shgj/2408629.html