支持向量機(jī)在人口數(shù)據(jù)分析中的應(yīng)用
[Abstract]:Statistical learning theory is aimed at the machine learning theory under the small sample. Its core idea is to control the generalization ability of the learning machine by controlling the complexity of the learning machine. The support vector machine developed according to this theory is based on the principle of VC and structural risk minimization. support vector machine has many advantages, and its appearance solves the practical problems such as overlearning, nonlinear, high dimension and so on. Nowadays, support vector machine (SVM) is applied to all fields of life to solve some practical problems. This paper mainly introduces the characteristics of support vector machine and its practical application in population data analysis. In the introduction, the background and significance of the topic are briefly described, and the research status of support vector machine at home and abroad is introduced. The second chapter briefly introduces the development history of machine learning and the problems related to machine learning. The third chapter briefly describes the statistical theory, including the main contents of statistical learning, VC dimension, generalization boundary, structural wind direction minimizing principle and other related concepts and contents. The fourth chapter focuses on the related contents of support vector machine, including linear support vector machine and nonlinear support vector machine, linear support vector machine is divided into linear divisible and linear inseparable cases. This chapter also introduces the related concepts of kernel function and support vector machine regression machine. The fifth chapter discusses the related characteristics of support vector machine and its advantages. The sixth chapter is the key content of this paper. According to the collected data about the total population of Shenyang from 2002 to the end of 2014, the population prediction is carried out by using support vector machine (SVM) model, and two kinds of support vector machine models are established in this chapter. Forecast the total population of Shenyang at the end of the year in the next five years. In the seventh chapter, according to the collection of the gross domestic product of Shenyang area, the relationship between the population quantity and the gross domestic product of Shenyang area is found, and the importance of forecasting the population quantity is explained. Finally, the characteristics of support vector machine method are summarized, the future development of support vector machine is prospected and the future research direction is put forward.
【學(xué)位授予單位】:遼寧師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:C921
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王云英;閻滿富;;C-支持向量機(jī)及其改進(jìn)[J];唐山師范學(xué)院學(xué)報;2012年05期
2 謝飛;;支持向量機(jī)及其應(yīng)用研究[J];安徽教育學(xué)院學(xué)報;2007年03期
3 方輝;艾青;;支持向量機(jī)訓(xùn)練及分類算法研究[J];大慶師范學(xué)院學(xué)報;2009年03期
4 胡運紅;;支持向量機(jī)的研究與應(yīng)用[J];運城學(xué)院學(xué)報;2012年02期
5 吳疆;董婷;;基于支持向量機(jī)算法的癌癥預(yù)測[J];榆林學(xué)院學(xué)報;2007年04期
6 燕孝飛;王艷秋;;支持向量機(jī)及其在羽絨識別中的應(yīng)用研究[J];棗莊學(xué)院學(xué)報;2007年05期
7 王達(dá);張坤;;基于支持向量機(jī)和轉(zhuǎn)換的錯誤驅(qū)動學(xué)習(xí)方法的組塊識別[J];南陽師范學(xué)院學(xué)報;2009年06期
8 胡運紅;段惠琴;;多分類支持向量機(jī)的算法研究[J];運城學(xué)院學(xué)報;2010年02期
9 周宓;;基于支持向量機(jī)的信用卡信譽(yù)檢測[J];新鄉(xiāng)學(xué)院學(xué)報(自然科學(xué)版);2012年06期
10 余萍;;基于邊界調(diào)節(jié)的支持向量機(jī)模型[J];新課程(教育學(xué)術(shù)版);2008年02期
相關(guān)會議論文 前10條
1 余樂安;姚瀟;;基于中心化支持向量機(jī)的信用風(fēng)險評估模型[A];第六屆(2011)中國管理學(xué)年會——商務(wù)智能分會場論文集[C];2011年
2 劉希玉;徐志敏;段會川;;基于支持向量機(jī)的創(chuàng)新分類器[A];山東省計算機(jī)學(xué)會2005年信息技術(shù)與信息化研討會論文集(一)[C];2005年
3 史曉濤;劉建麗;駱玉榮;;一種抗噪音的支持向量機(jī)學(xué)習(xí)方法[A];全國第19屆計算機(jī)技術(shù)與應(yīng)用(CACIS)學(xué)術(shù)會議論文集(下冊)[C];2008年
4 何琴淑;劉信恩;肖世富;;基于支持向量機(jī)的系統(tǒng)辨識方法研究及應(yīng)用[A];中國力學(xué)大會——2013論文摘要集[C];2013年
5 劉駿;;基于支持向量機(jī)方法的衢州降雪模型[A];第五屆長三角氣象科技論壇論文集[C];2008年
6 王婷;胡秀珍;;基于組合向量的支持向量機(jī)方法預(yù)測膜蛋白類型[A];第十一次中國生物物理學(xué)術(shù)大會暨第九屆全國會員代表大會摘要集[C];2009年
7 趙晶;高雋;張旭東;謝昭;;支持向量機(jī)綜述[A];全國第十五屆計算機(jī)科學(xué)與技術(shù)應(yīng)用學(xué)術(shù)會議論文集[C];2003年
8 周星宇;王思元;;智能數(shù)學(xué)與支持向量機(jī)[A];2005年中國智能自動化會議論文集[C];2005年
9 顏根廷;馬廣富;朱良寬;宋斌;;一種魯棒支持向量機(jī)算法[A];2006中國控制與決策學(xué)術(shù)年會論文集[C];2006年
10 侯澍e,
本文編號:2492566
本文鏈接:http://www.sikaile.net/shekelunwen/renkou/2492566.html