CT紋理分析在鑒別乏脂肪腎錯構(gòu)瘤與腎透明細胞癌中的價值
本文選題:腎錯構(gòu)瘤 切入點:腎透明細胞癌 出處:《臨床放射學雜志》2017年07期
【摘要】:目的探討CT紋理分析對鑒別乏脂肪腎錯構(gòu)瘤與腎透明細胞癌的價值。方法回顧性分析經(jīng)手術(shù)病理證實的16例乏脂肪腎錯構(gòu)瘤與79例腎透明細胞癌的CT增強圖像;通過紋理分析的方法測得其平均值、標準差、熵、不均勻度、峰值、偏度等定量參數(shù),并進行統(tǒng)計學分析。結(jié)果兩位觀察者測得的CT紋理分析定量參數(shù)的一致性分析結(jié)果如下:平均值、標準差、熵、不均勻度、峰值及偏度的Cronbachα系數(shù)分別為:0.97、0.93、0.97、0.94、0.56、0.68。紋理分析定量參數(shù)中差、熵、不均勻度三個參數(shù)兩組間比較結(jié)果具有顯著差異:標準差(t=3.60,P0.01),熵(t=4.80,P0.01),不均勻度(t=3.86,P0.01);利用標準差鑒別兩組腫瘤的曲線下面積、閾值、敏感性、特異性、準確性分別為:0.78、45.46、70.9%、81.2%、72.6%;利用熵鑒別兩組腫瘤的曲線下面積、閾值、敏感性、特異性、準確性分別為:0.82、4.50、84.8%、68.8%、82.1%;利用不均勻度鑒別兩組腫瘤的曲線下面積、閾值、敏感性、特異性、準確性分別為:0.80、0.09、70.9%、81.2%、72.6%。利用多參數(shù)聯(lián)合鑒別腎乏脂肪錯構(gòu)瘤與腎透明細胞癌的效能:標準差+熵鑒別兩組腫瘤的曲線下面積、敏感性、特異性、準確性分別為:0.83%、75.0%、81.0%、80.0%;標準差+不均勻度鑒別兩組腫瘤的曲線下面積、敏感性、特異性、準確性分別為:0.81%、81.2%、70.1%、71.6%;熵+不均勻度鑒別兩組腫瘤的曲線下面積、敏感性、特異性、準確性分別為:0.83、81.2%、70.1%、72.6%;標準差+熵+不均勻度鑒別兩組腫瘤的曲線下面積、敏感性、特異性、準確性分別為:0.84、87.5%、69.6%、72.6%。結(jié)論 CT紋理分析的部分定量參數(shù)(標準差、熵、不均勻度)可用于鑒別乏脂肪錯構(gòu)瘤與腎細胞癌。
[Abstract]:Objective to evaluate the value of CT texture analysis in differentiating adipogenic renal hamartoma from renal clear cell carcinoma. Methods CT enhanced images of 16 cases of adipose renal hamartoma and 79 cases of renal clear cell carcinoma proved by surgery and pathology were retrospectively analyzed. The quantitative parameters such as average value, standard deviation, entropy, non-uniformity, peak value, deviation and so on are measured by means of texture analysis. Results the consistency of the quantitative parameters of CT texture analysis measured by two observers was as follows: mean value, standard deviation, entropy, non-uniformity, The Cronbach 偽 coefficients of peak value and skewness are 0. 97 / 0. 93 / 0. 97 / 0. 94 / 0. 566 / 0. 68 respectively. There are significant differences between the three groups in the quantitative parameters of texture analysis: standard deviation is 3. 60% P0.01g, entropy is 4. 80 P0. 01, heterogeneity is 3. 86% P0. 01, and the area under the curve of the two groups is identified by using standard deviation. The threshold value, sensitivity, specificity, accuracy were 72.6. the area under the curve, threshold, sensitivity, specificity and accuracy of the two groups were identified by entropy, respectively. The area under the curve, the threshold, the sensitivity, the specificity and the accuracy of the tumor in the two groups were respectively 82.1.The area under the curve, the threshold, the sensitivity, the specificity, and the accuracy of the two groups were respectively 82.1.The area under the curve, the threshold, the sensitivity, the specificity, and the accuracy of the two groups were identified by non-uniformity. The sensitivity, specificity and accuracy of the two groups were respectively 81.20.The effectiveness of multiple parameters in differentiating renal adipose hamartoma from renal clear cell carcinoma: the area under the curve, sensitivity and specificity of the two groups of tumors were identified by standard deviation entropy. The accuracy of the two groups of tumors was 75.0 and 81.0, respectively; the area under the curve, sensitivity, specificity, and accuracy of the standard deviation non-uniformity were 70.1 and 71.6, respectively; the area under the curve, sensitivity, specificity, and specificity of the two groups of tumors were identified by entropy non-uniformity, and the area under the curve, sensitivity, specificity, and specificity of the two groups of tumors were identified. The accuracy was 70.1% and 72.6% respectively; the standard deviation entropy unevenness was used to identify the area, sensitivity, specificity and accuracy of the two groups of tumors under the curve, respectively. The sensitivity, specificity and accuracy of the two groups were 69.66.Conclusion some quantitative parameters of CT texture analysis (standard deviation, entropy, entropy), Heterogeneity) can be used to differentiate adipose hamartoma from renal cell carcinoma.
【作者單位】: 徐州醫(yī)學院附屬醫(yī)院放射科;
【分類號】:R730.44;R737.11
【相似文獻】
相關(guān)期刊論文 前10條
1 劉f ,程敬之;分形模型的超聲圖像紋理分析[J];生物醫(yī)學工程學雜志;1999年03期
2 吳天秀;蔡潔;;基于紋理分析的骨質(zhì)疏松計量診斷[J];中國骨質(zhì)疏松雜志;2014年07期
3 張鏡清,孫軍;采用紋理分析特征用于肝臟超聲圖像的病患的辨識[J];中國醫(yī)學影像技術(shù);1993年03期
4 劉偉;李月卿;;醫(yī)學圖像紋理分析綜述[J];泰山醫(yī)學院學報;2006年01期
5 杜X,童勤業(yè),許俊;基于小波包分解和HMM模型的紋理分析[J];醫(yī)療設(shè)備信息;2003年08期
6 李振立;楊曉梅;;基于紋理分析的帶標記線心臟MR圖像分割[J];中國組織工程研究與臨床康復(fù);2011年09期
7 王李冬;邰曉英;巴特爾;;基于小波變換紋理分析的醫(yī)學圖像檢索[J];中國醫(yī)療器械雜志;2006年02期
8 黃亞麗,李芬華,趙真;B超肝臟圖像紋理特征提取方法的實驗研究[J];中國醫(yī)學影像技術(shù);2004年12期
9 羅立民,鮑旭東,,田雪芹;基于紋理分析的磁共振圖象區(qū)域分割[J];自動化學報;1995年04期
10 ;[J];;年期
相關(guān)會議論文 前8條
1 徐國棟;郭恒業(yè);;統(tǒng)計紋理生成模型[A];中國科學技術(shù)協(xié)會首屆青年學術(shù)年會論文集(工科分冊·上冊)[C];1992年
2 盧海燕;陳明;孫梅;宋樹良;馬艷;鄭傳立;;肝纖維化超聲圖像紋理分析與組織學檢查對照研究[A];第二屆長三角超聲醫(yī)學論壇暨2009年浙江省超聲醫(yī)學學術(shù)年會論文匯編[C];2009年
3 楊關(guān);馮國燦;鄒小林;劉志勇;;彩色紋理分析中的高斯圖模型[A];第十五屆全國圖象圖形學學術(shù)會議論文集[C];2010年
4 熊欣;何中市;;紋理分析在超聲圖像中的應(yīng)用[A];2008年計算機應(yīng)用技術(shù)交流會論文集[C];2008年
5 姚明海;應(yīng)宏微;;基于反饋的汽車牌照紋理分析定位算法的研究[A];第二十三屆中國控制會議論文集(下冊)[C];2004年
6 黃戰(zhàn)華;劉正;張振;蔡懷宇;楊基春;張尹馨;;基于矢量化方法的紋理缺陷快速檢測[A];2008中國儀器儀表與測控技術(shù)進展大會論文集(Ⅰ)[C];2008年
7 管玉娟;王淑晴;關(guān)澤群;;紋理分析的條件模式譜方法[A];第十四屆全國遙感技術(shù)學術(shù)交流會論文摘要集[C];2003年
8 劉佳;李哲英;王淑英;;路標識別算法研究[A];2008通信理論與技術(shù)新發(fā)展——第十三屆全國青年通信學術(shù)會議論文集(下)[C];2008年
相關(guān)博士學位論文 前3條
1 高妮;基于Contourlet提取紋理建立早期AD的高斯過程預(yù)測模型[D];首都醫(yī)科大學;2016年
2 毛羽;血清miR-1290聯(lián)合DW-MRI紋理分析預(yù)測食管鱗癌放化療敏感性及相關(guān)機制的研究[D];天津醫(yī)科大學;2016年
3 張國鵬;三維紋理分析在虛擬結(jié)腸鏡計算機輔助檢測/診斷中的應(yīng)用研究[D];第四軍醫(yī)大學;2013年
相關(guān)碩士學位論文 前10條
1 陳金霞;快速粒度估計法在紋理分析中的應(yīng)用研究[D];華南理工大學;2015年
2 劉W
本文編號:1696530
本文鏈接:http://www.sikaile.net/linchuangyixuelunwen/1696530.html