層次學(xué)習(xí)骨干粒子群優(yōu)化算法
本文關(guān)鍵詞:層次學(xué)習(xí)骨干粒子群優(yōu)化算法
更多相關(guān)文章: 骨干粒子群優(yōu)化 早熟 種群多樣性
【摘要】:對骨干粒子群優(yōu)化(BPSO)種群多樣性迅速喪失的原因進(jìn)行分析,提出層次學(xué)習(xí)骨干粒子群優(yōu)化算法以克服早熟現(xiàn)象.該算法中粒子依不同的學(xué)習(xí)概率向粒子自身的最優(yōu)粒子、優(yōu)勝粒子和群體最優(yōu)粒子學(xué)習(xí),該機(jī)制使群體實(shí)現(xiàn)不同層次的搜索并有效維持群體的多樣性.此外,群體最優(yōu)粒子依概率采用跳躍策略以增強(qiáng)逃逸能力或采用擾動(dòng)策略以提高解的質(zhì)量.將所提出的算法與多種改進(jìn)的粒子群優(yōu)化算法進(jìn)行對比,仿真結(jié)果表明,所提出算法的綜合表現(xiàn)優(yōu)于其他算法.
【作者單位】: 安徽工業(yè)大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院;安徽工業(yè)大學(xué)數(shù)理科學(xué)與工程學(xué)院;
【關(guān)鍵詞】: 骨干粒子群優(yōu)化 早熟 種群多樣性
【基金】:國家自然科學(xué)基金項(xiàng)目(61300059,61502010)
【分類號】:TP18
【正文快照】: 0引言粒子群優(yōu)化算法[1](PSO)模擬鳥群、魚群的覓食特性以及人類的社會行為,由于其概念簡單、易于實(shí)現(xiàn),受到了研究者們的廣泛關(guān)注.2003年,Kennedy提出了骨干粒子群優(yōu)化[2](BPSO),該算法消去了傳統(tǒng)PSO中的速度項(xiàng),通過基于個(gè)體最優(yōu)位置(pbest)和群體最優(yōu)位置(gbest)的高斯采樣完
【相似文獻(xiàn)】
中國期刊全文數(shù)據(jù)庫 前10條
1 蒙正中;;一種改進(jìn)的混合粒子群優(yōu)化算法[J];桂林工學(xué)院學(xué)報(bào);2009年03期
2 吳昌友;王福林;馬力;;一種新的改進(jìn)粒子群優(yōu)化算法[J];控制工程;2010年03期
3 周馳,高海兵,高亮,章萬國;粒子群優(yōu)化算法[J];計(jì)算機(jī)應(yīng)用研究;2003年12期
4 高鷹,謝勝利;免疫粒子群優(yōu)化算法[J];計(jì)算機(jī)工程與應(yīng)用;2004年06期
5 張榮沂;一種新的集群優(yōu)化方法——粒子群優(yōu)化算法[J];黑龍江工程學(xué)院學(xué)報(bào);2004年04期
6 高鷹;謝勝利;;混沌粒子群優(yōu)化算法[J];計(jì)算機(jī)科學(xué);2004年08期
7 劉釗,康立山,蔣良孝,楊林權(quán);用粒子群優(yōu)化改進(jìn)算法求解混合整數(shù)非線性規(guī)劃問題[J];小型微型計(jì)算機(jī)系統(tǒng);2005年06期
8 戴冬雪,王祁,阮永順,王曉超;基于混沌思想的粒子群優(yōu)化算法及其應(yīng)用[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年10期
9 竇全勝;周春光;馬銘;劉全;;群核進(jìn)化粒子群優(yōu)化方法[J];計(jì)算機(jī)科學(xué);2005年08期
10 范娜;云慶夏;;粒子群優(yōu)化算法及其應(yīng)用[J];信息技術(shù);2006年01期
中國重要會議論文全文數(shù)據(jù)庫 前10條
1 張妍;張曉光;王永鋼;;幾種改進(jìn)型的粒子群優(yōu)化算法[A];第一屆中國高校通信類院系學(xué)術(shù)研討會論文集[C];2007年
2 孫紅光;潘毓學(xué);;基于運(yùn)動(dòng)目標(biāo)路徑的粒子群優(yōu)化算法研究[A];第二屆全國信息獲取與處理學(xué)術(shù)會議論文集[C];2004年
3 韓毅;唐加福;郭偉宏;劉陽;;混合粒子群優(yōu)化算法求解多層批量問題(英文)[A];中國運(yùn)籌學(xué)會第八屆學(xué)術(shù)交流會論文集[C];2006年
4 金一粟;梁逸曾;;空間自適應(yīng)粒子群優(yōu)化算法的應(yīng)用研究[A];第九屆全國計(jì)算(機(jī))化學(xué)學(xué)術(shù)會議論文摘要集[C];2007年
5 汪榮貴;李守毅;孫見青;;一種新的自適應(yīng)粒子群優(yōu)化算法及應(yīng)用[A];計(jì)算機(jī)技術(shù)與應(yīng)用進(jìn)展·2007——全國第18屆計(jì)算機(jī)技術(shù)與應(yīng)用(CACIS)學(xué)術(shù)會議論文集[C];2007年
6 黃雙歡;程良倫;;一種基于粒子群優(yōu)化的快速圖像傾斜角度檢測算法[A];中國自動(dòng)化學(xué)會中南六省(區(qū))2010年第28屆年會·論文集[C];2010年
7 侯志榮;呂振肅;;基于退火策略的粒子群優(yōu)化算法[A];2003年中國智能自動(dòng)化會議論文集(下冊)[C];2003年
8 徐俊杰;忻展紅;;基于增強(qiáng)型參考位置的粒子群優(yōu)化模型[A];’2004系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會論文集[C];2004年
9 王亞;于永光;耿玲玲;;一類改進(jìn)的自適應(yīng)粒子群優(yōu)化算法對混沌系統(tǒng)未知參數(shù)的估計(jì)[A];中國力學(xué)大會——2013論文摘要集[C];2013年
10 崔靜;鄧方;方浩;;基于改進(jìn)粒子群優(yōu)化算法的彈道求解方法[A];2013年中國智能自動(dòng)化學(xué)術(shù)會議論文集(第三分冊)[C];2013年
中國博士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 劉昊;多樣性增強(qiáng)的粒子群優(yōu)化算法及其應(yīng)用研究[D];北京理工大學(xué);2015年
2 劉華鎣;粒子群優(yōu)化算法的改進(jìn)研究及在石油工程中的應(yīng)用[D];東北石油大學(xué);2012年
3 劉波;粒子群優(yōu)化算法及其在機(jī)電設(shè)備中的應(yīng)用研究[D];中北大學(xué);2011年
4 熊勇;粒子群優(yōu)化算法的行為分析與應(yīng)用實(shí)例[D];浙江大學(xué);2005年
5 唐賢倫;混沌粒子群優(yōu)化算法理論及應(yīng)用研究[D];重慶大學(xué);2007年
6 閆允一;粒子群優(yōu)化及其在圖像處理中的應(yīng)用研究[D];西安電子科技大學(xué);2008年
7 余炳輝;粒子群優(yōu)化算法試驗(yàn)研究及擴(kuò)展[D];華中科技大學(xué);2007年
8 唐賢倫;混沌粒子群優(yōu)化算法理論及應(yīng)用[D];重慶大學(xué);2007年
9 徐慧;粒子群優(yōu)化算法改進(jìn)及其在煤層氣產(chǎn)能預(yù)測中的應(yīng)用研究[D];中國礦業(yè)大學(xué);2013年
10 徐星;融合熱運(yùn)動(dòng)機(jī)制的粒子群優(yōu)化算法研究及其應(yīng)用[D];武漢大學(xué);2010年
中國碩士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 陳卓;粒子群優(yōu)化算法的改進(jìn)及在油藏?cái)?shù)值模擬中的應(yīng)用[D];北京建筑大學(xué);2015年
2 白云;基于粒子群優(yōu)化算法的復(fù)雜網(wǎng)絡(luò)社區(qū)挖掘[D];西北農(nóng)林科技大學(xué);2015年
3 楊艷華;基于粒子群優(yōu)化支持向量機(jī)的網(wǎng)絡(luò)態(tài)勢預(yù)測模型研究[D];蘭州大學(xué);2015年
4 孟亞州;基于粒子群優(yōu)化OTSU的肺組織分割算法研究[D];寧夏大學(xué);2015年
5 鄭博;基于快速排序的多目標(biāo)粒子群優(yōu)化算法的研究及應(yīng)用[D];鄭州大學(xué);2015年
6 米永強(qiáng);非線性規(guī)劃問題的混合粒子群優(yōu)化算法研究[D];寧夏大學(xué);2015年
7 李建美;基于自適應(yīng)變異與文化框架的混沌粒子群優(yōu)化算法[D];陜西師范大學(xué);2015年
8 劉星;基于粒子群優(yōu)化算法的特征選擇方法研究[D];南京大學(xué);2015年
9 牛旭;動(dòng)態(tài)粒子群優(yōu)化算法及其應(yīng)用[D];西安電子科技大學(xué);2014年
10 葉華;粒子群優(yōu)化算法研究[D];西安電子科技大學(xué);2014年
,本文編號:832067
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/832067.html