室內(nèi)移動機(jī)器人定位技術(shù)研究
[Abstract]:Positioning is the key to solve all kinds of complex tasks of autonomous mobile robot, and it has important theoretical significance and application value to improve robot automation level. Robot localization methods are divided into two main categories: relative positioning and absolute positioning. Relative positioning refers to the robot getting its own position information through the sensor when the initial position is known, and absolute positioning is to determine its position through the sensor when the initial position is unknown. The main contents of this paper are as follows: firstly, this paper introduces the basic module of robot positioning, the basic methods of image processing and other preparatory knowledge, gives the establishment and transformation of robot coordinate system, the kinematics model and control algorithm of robot. Secondly, this paper studies and analyzes the robot model and positioning algorithm of the relative location method, builds a mobile robot platform with zero turning radius, and adds the electromagnetic compass module to the direction information of the robot. At the same time, Kalman filter algorithm is introduced to make the angle of electromagnetic compass accurate to-1 擄, which provides more reliable and stable course information for mobile robot. It lays a foundation for accurate positioning of indoor mobile robot based on encoder and electromagnetic compass. At the same time, zero-radius turning makes the robot avoid obstacles in the process of motion without introducing additional errors. The rationality of the positioning system is further explained. Thirdly, in absolute positioning, according to the existing resources and the precision requirements of indoor positioning, a global positioning system based on computer vision is proposed, and a global vision positioning platform based on 156cm 脳 117cm is built. After a series of image processing, the image coordinates of the two color marks on the top of the mobile robot are obtained through a series of image processing, which is fixed directly above the platform by a third angle camera. Then according to the two reference points known to the image coordinates and the world coordinates, the world coordinates of the robot on the experimental platform are calculated, and the position and pose information of the robot is obtained, so that the position and orientation of the robot can be completed. The results show that the global positioning accuracy of vision reaches centimeter level, which accords with the requirements of indoor mobile robot for positioning accuracy. Finally, a kind of mobile robot upper computer-indoor mobile robot upper computer system is designed and implemented. For the positioning method based on encoder and electromagnetic compass, the upper computer receives the data of the robot in real time, analyzes the position information of the robot, and displays it in the coordinate system. For the global positioning of vision, the upper computer displays the camera window and the binary graph after processing in real time, and samples the pictures regularly to get the position and pose information of the robot, and displays the motion track on the coordinate system. At the same time, the position and pose information is displayed in the data transmitting area according to the wireless protocol, and it is transmitted to the robot through the excellent wireless module APC220 to guide it to move toward the target.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周艷聰;董永峰;王安娜;顧軍華;;新的室內(nèi)移動機(jī)器人自定位方法[J];計算機(jī)應(yīng)用;2015年02期
2 楊小亮;葉阿勇;凌遠(yuǎn)景;;基于閾值分類及信號強(qiáng)度加權(quán)的室內(nèi)定位算法[J];計算機(jī)應(yīng)用;2013年10期
3 夏梁盛;嚴(yán)衛(wèi)生;;基于柵格法的移動機(jī)器人運(yùn)動規(guī)劃研究[J];計算機(jī)仿真;2012年12期
4 曾健平;王保同;謝海情;;自主移動機(jī)器人定位系統(tǒng)中Kalman濾波算法改進(jìn)[J];計算機(jī)應(yīng)用研究;2011年05期
5 王殿君;蘭云峰;任福君;趙麗杰;姜永成;;基于有源RFID的室內(nèi)移動機(jī)器人定位系統(tǒng)[J];清華大學(xué)學(xué)報(自然科學(xué)版);2010年05期
6 禹建麗;張宗偉;;自主移動服務(wù)機(jī)器人的研究現(xiàn)狀淺析[J];中原工學(xué)院學(xué)報;2008年04期
7 潘良晨;陳衛(wèi)東;;室內(nèi)移動機(jī)器人的視覺定位方法研究[J];機(jī)器人;2006年05期
8 王景川,陳衛(wèi)東,曹其新;基于全景視覺與里程計的移動機(jī)器人自定位方法研究[J];機(jī)器人;2005年01期
9 李瑞峰,李偉招;基于多傳感器信息融合的移動機(jī)器人路徑規(guī)劃[J];機(jī)電一體化;2002年04期
10 徐國華,譚民;移動機(jī)器人的發(fā)展現(xiàn)狀及其趨勢[J];機(jī)器人技術(shù)與應(yīng)用;2001年03期
相關(guān)博士學(xué)位論文 前4條
1 邵暖;基于雙目視覺的多機(jī)器人系統(tǒng)協(xié)調(diào)跟蹤控制研究[D];燕山大學(xué);2015年
2 張琦;移動機(jī)器人的路徑規(guī)劃與定位技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2014年
3 王勇;移動機(jī)器人的定位能力估計及定位[D];上海交通大學(xué);2014年
4 嚴(yán)勇杰;多機(jī)器人系統(tǒng)協(xié)調(diào)與控制研究[D];哈爾濱工程大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 魏豪左;基于深度視覺的室內(nèi)移動機(jī)器人SLAM算法研究[D];蘭州理工大學(xué);2016年
2 吳顯;基于多傳感器信息融合的移動機(jī)器人定位方法研究[D];北京交通大學(xué);2016年
3 王安娜;室內(nèi)移動機(jī)器人自定位方法的研究[D];河北工業(yè)大學(xué);2015年
4 馮俊杰;多機(jī)器人系統(tǒng)避障與最優(yōu)協(xié)調(diào)[D];廣西大學(xué);2014年
5 周倫;室內(nèi)移動機(jī)器人超聲波網(wǎng)絡(luò)定位方法研究[D];哈爾濱工業(yè)大學(xué);2013年
6 張哲;基于局部特征的室內(nèi)移動機(jī)器人物體識別算法研究[D];武漢理工大學(xué);2013年
7 劉奇;室內(nèi)輪式移動機(jī)器人系統(tǒng)設(shè)計[D];哈爾濱工業(yè)大學(xué);2012年
8 徐勝生;室內(nèi)服務(wù)機(jī)器人定位與導(dǎo)航的研究和實(shí)現(xiàn)[D];合肥工業(yè)大學(xué);2012年
9 包閏貴;室內(nèi)機(jī)器人超聲測距和定位算法的研究[D];安徽大學(xué);2011年
10 胡超;足球機(jī)器人協(xié)調(diào)控制系統(tǒng)研究[D];中國科學(xué)技術(shù)大學(xué);2010年
,本文編號:2430439
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2430439.html