天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

農(nóng)村居民用水行為識別方法研究

發(fā)布時間:2019-02-25 13:39
【摘要】:隨著經(jīng)濟的發(fā)展和居民生活水平的提高,人口增長、環(huán)境污染、以及城鎮(zhèn)化等因素使得水資源供需之間的矛盾愈加突出,用水安全問題日益凸顯。研究農(nóng)村居民用水行為,可以提高當前農(nóng)村居民的節(jié)水意識并改善水資源管理薄弱現(xiàn)狀。本文提出的農(nóng)村居民用水行為識別方法可以準確的識別居民用水行為,改善當前用水基礎設施。本文通過分析幾種典型的居民用水事件的流量特點。研究了農(nóng)村居民用水行為的識別方法。具體的工作如下:從訓練集合中提取不同用水行為的流量特征,采用由左到右隱馬爾可夫模型(Hidden Markov Model, HMM)建立不同類型居民用水行為的識別模型,將測試數(shù)據(jù)輸入訓練好的HMM中對居民用水行為進行識別,根據(jù)居民此刻用水的流量序列識別居民此時的用水事件。為提高應用HMM的用水行為識別結果的準確度,本文將HMM和時間概率函數(shù)結合起來,得出該方法的識別結果。選定人工神經(jīng)網(wǎng)絡(Artificial NeuralNetworks,ANN)算法,設計BP神經(jīng)網(wǎng)絡(Back Propagation, BP)網(wǎng)絡結構,確定BP網(wǎng)絡訓練參數(shù),使用BP神經(jīng)網(wǎng)絡建立居民用水行為的識別模型,最后將測試數(shù)據(jù)輸入訓練好的BP神經(jīng)網(wǎng)絡模型中對居民用水行為進行識別,得出識別的結果。研究結果表明:對不同流量模式的用水事件采用HMM和時間概率函數(shù)的組合模型能得出更準確的識別結果;相似流量模式的用水事件采用BP神經(jīng)網(wǎng)絡模型識別能得到較高的識別準確度。
[Abstract]:With the development of economy and the improvement of residents' living standard, population growth, environmental pollution and urbanization make the contradiction between supply and demand of water resources more and more prominent, and the problem of water security is becoming more and more prominent. The study of water use behavior of rural residents can improve the awareness of water saving and improve the weak situation of water resources management. The method proposed in this paper can accurately identify the water use behavior of rural residents and improve the current water use infrastructure. In this paper, the flow characteristics of several typical water use events are analyzed. The identification method of rural residents' water use behavior was studied. The specific work is as follows: the flow characteristics of different water use behaviors are extracted from the training set, and the identification models of different types of residents' water use behavior are established by using left to right hidden Markov model (Hidden Markov Model, HMM). The test data are input into the trained HMM to identify the residents' water use behavior, and the residents' water use events are identified according to the flow sequence of the residents' water consumption at the moment. In order to improve the accuracy of the recognition results of water use behavior using HMM, this paper combines HMM with time probability function, and obtains the recognition results of this method. The artificial neural network (Artificial NeuralNetworks,ANN) algorithm is selected, the (Back Propagation, BP) network structure of BP neural network is designed, the training parameters of BP network are determined, and the identification model of residents' water consumption behavior is established by using BP neural network. Finally, the test data are input into the trained BP neural network model to identify the behavior of residents' water use, and the recognition results are obtained. The results show that the combination model of HMM and time probability function can obtain more accurate identification results for different water flow patterns. The BP neural network model can be used to identify water events with similar flow patterns.
【學位授予單位】:西安理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP183

【參考文獻】

相關期刊論文 前10條

1 曾勇;舒歡;胡江平;葛月月;;基于BP神經(jīng)網(wǎng)絡的自適應偽最近鄰分類[J];電子與信息學報;2016年11期

2 Fengye Hu;Lu Wang;Shanshan Wang;Xiaolan Liu;Gengxin He;;A Human Body Posture Recognition Algorithm Based on BP Neural Network for Wireless Body Area Networks[J];中國通信;2016年08期

3 郭珍;;農(nóng)村居民飲用水安全問題研究——以G村為例[J];經(jīng)營管理者;2016年21期

4 YIN Hong;YANG Shuqiang;MA Shaodong;LIU Fei;CHEN Zhikun;;A Novel Parallel Scheme for Fast Similarity Search in Large Time Series[J];中國通信;2015年02期

5 黃振翔;彭波;吳娟;王儒朋;;基于DTW與混合判別特征檢測器的手勢識別[J];計算機工程;2014年05期

6 龍泉;劉永前;楊勇平;;基于粒子群優(yōu)化BP神經(jīng)網(wǎng)絡的風電機組齒輪箱故障診斷方法[J];太陽能學報;2012年01期

7 錢X;馬旭東;戴先中;;基于抽象隱馬爾可夫模型的運動行為識別方法[J];模式識別與人工智能;2009年03期

8 連可;黃建國;王厚軍;龍兵;;一種基于遺傳算法的SVM決策樹多分類策略研究[J];電子學報;2008年08期

9 張麗君;吳曉娟;盛贊;亓磊;;基于HMM復雜場景下的行為識別方法[J];計算機工程;2008年07期

10 王海軍;白玫;賈兆立;覃麗萍;;基于二次優(yōu)化BP神經(jīng)網(wǎng)絡的期貨價格預測[J];數(shù)學的實踐與認識;2008年05期

相關碩士學位論文 前4條

1 馮桐;基于神經(jīng)網(wǎng)絡的手勢識別研究[D];北京理工大學;2015年

2 梁鵬華;基于HMM的人體行為識別研究[D];蘭州交通大學;2013年

3 徐輝;北京市城市居民生活用水影響因素跟蹤調(diào)查分析[D];首都師范大學;2012年

4 徐利軍;基于HMM和神經(jīng)網(wǎng)絡的語音識別研究[D];湖北工業(yè)大學;2012年

,

本文編號:2430236

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2430236.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶66f59***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com