天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 自動(dòng)化論文 >

基于近紅外光譜結(jié)合主成分分析和BP神經(jīng)網(wǎng)絡(luò)的常用塑料快速鑒別

發(fā)布時(shí)間:2019-02-18 20:22
【摘要】:為了實(shí)現(xiàn)塑料的分類回收,需要對(duì)塑料進(jìn)行快速準(zhǔn)確的鑒別。收集了丙烯腈-丁二烯-苯乙烯(ABS)、聚丙烯(PP)、聚乙烯(PE)、聚對(duì)苯二甲酸乙二醇酯(PET)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚碳酸酯(PC)等7種常用的塑料,利用近紅外光譜儀分別測(cè)得其反射光譜,應(yīng)用主成分分析和反向傳播(BP)神經(jīng)網(wǎng)絡(luò)建立模型進(jìn)行鑒別。首先利用主成分分析提取光譜的特征信息,前8個(gè)主成分的累計(jì)貢獻(xiàn)率達(dá)到94.367%,包含了原始光譜的主要信息,將這8個(gè)主成分作為BP神經(jīng)網(wǎng)絡(luò)的輸入,7種塑料的種類作為輸出,建立三層BP神經(jīng)網(wǎng)絡(luò)模型。每種塑料各30個(gè)樣本共210個(gè)用來(lái)訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型,各10個(gè)共70個(gè)用來(lái)預(yù)測(cè),預(yù)測(cè)結(jié)果準(zhǔn)確率達(dá)98.571%,能夠有效鑒別常用塑料。
[Abstract]:In order to realize the classification and recovery of plastics, it is necessary to identify the plastics quickly and accurately. Acrylonitrile-butadiene-styrene (ABS),) polypropylene (PP),) polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC),) were collected. Seven kinds of plastics, such as polycarbonate (PC), were measured by near infrared spectroscopy (NIR). Principal component analysis (PCA) and backpropagation (BP) neural network were used to establish models for identification. Firstly, the characteristic information of the spectrum is extracted by principal component analysis. The cumulative contribution rate of the first eight principal components is 94.367, which contains the main information of the original spectrum. The eight principal components are used as the input of the BP neural network. Seven kinds of plastics were used as the output, and a three-layer BP neural network model was established. A total of 210 samples of each plastic were used to train the neural network model and 70 were used to predict each kind of plastics. The accuracy of prediction was 98.571. it can effectively identify common plastics.
【作者單位】: 中國(guó)計(jì)量大學(xué)光學(xué)與電子科技學(xué)院;杭州彩譜科技有限公司;
【分類號(hào)】:TQ320.77;TP183

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 DelValls T A ,丁海燕;確定海洋沉積物中污染物來(lái)源的方法——多變量主成分分析方法[J];海洋地質(zhì)動(dòng)態(tài);2003年11期

2 王建民;王傳旭;楊力;余忠林;王運(yùn)祥;;基于主成分分析模型的煤礦企業(yè)員工滿意度實(shí)證研究[J];安徽理工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2007年02期

3 劉星;王震;馬新東;林忠勝;徐恒振;姚子偉;;常見(jiàn)亞非原油飽和鏈烷烴分布特征及主成分分析[J];環(huán)境污染與防治;2009年08期

4 王卓;;黑龍江省醫(yī)藥產(chǎn)業(yè)競(jìng)爭(zhēng)力實(shí)證分析[J];齊齊哈爾大學(xué)學(xué)報(bào)(哲學(xué)社會(huì)科學(xué)版);2013年01期

5 周海廷;;四川綠豆地方品種資源研究 Ⅲ地方品種群體數(shù)量性狀的通經(jīng)分析和主成分分析[J];西南科技大學(xué)學(xué)報(bào)(哲學(xué)社會(huì)科學(xué)版);1988年04期

6 董玉庫(kù),趙春瑞;木材物理力學(xué)性質(zhì)的綜合分析(Ⅰ)——主成分分析[J];東北林業(yè)大學(xué)學(xué)報(bào);1988年06期

7 韓波,林華榮;主成分分析在水質(zhì)監(jiān)測(cè)優(yōu)化布點(diǎn)中的應(yīng)用[J];中國(guó)環(huán)境監(jiān)測(cè);1991年01期

8 高偉平;;主成分分析在化學(xué)中的應(yīng)用及在可編程序計(jì)算器上的實(shí)現(xiàn)[J];化學(xué)工程師;1991年06期

9 任玉林,邴春亭,逯家輝,,郭曄;近紅外漫反射光譜的主成分分析[J];光譜學(xué)與光譜分析;1996年06期

10 王麗,何鷹,王顏萍,趙英,李偉,王小如,Frank Lee;近紅外光譜技術(shù)結(jié)合主成分聚類分析判別海面溢油種類[J];海洋環(huán)境科學(xué);2004年02期

相關(guān)會(huì)議論文 前10條

1 么彩蓮;魏寧;;關(guān)于主成分分析的改進(jìn)方法探討[A];中國(guó)現(xiàn)場(chǎng)統(tǒng)計(jì)研究會(huì)第12屆學(xué)術(shù)年會(huì)論文集[C];2005年

2 陳明星;繆柏其;靳韜;;利率影響因素的主成分分析與因子分析[A];中國(guó)現(xiàn)場(chǎng)統(tǒng)計(jì)研究會(huì)第12屆學(xué)術(shù)年會(huì)論文集[C];2005年

3 孫曉東;胡勁松;焦s

本文編號(hào):2426169


資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2426169.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶31916***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com