基于徑向基神經(jīng)網(wǎng)絡(luò)的機電系統(tǒng)精確模型辨識方法研究
[Abstract]:In this paper, the exact modeling of servo system is studied. By analyzing the complexity and imprecision of mechanism modeling, the paper points out the improvement of rapidity, accuracy and simplicity brought by the introduction of neural network modeling. However, although there are many improved methods for neural network identification, most of them only work well under some specific simulation models, lacking the verification of the actual system, and some algorithms are not even suitable for the actual system identification. Therefore, in this paper, the exact model identification of servo system based on neural network is studied. The main research results can be summarized as follows: firstly, for a class of position servo system with permanent magnet synchronous motor as the actuator, The nominal model analysis and the detailed analysis of perturbation terms are carried out, and the effects of different nonlinear links and perturbation terms on neural network identification are analyzed, which provides a theoretical basis for the optimization design of neural network identification methods. Secondly, the basic structure of neural network identification, the structural characteristics and selection basis of neural network, the basic training method of neural network, and the selection basis of selecting radial basis function neural network identification are pointed out. By comparing the advantages and disadvantages of the training methods, the improvement direction of the neural network parameter training method is provided. Then, combined with the characteristics of servo system, a two-point differential series-parallel identification structure is proposed for servo system. The structure of neural network is optimized, and the training algorithm of neural network parameters is improved. The combination of orthogonal least square method (OLS) and gradient descent method (GD) can effectively reduce the number of neural network center nodes and reduce the dependence on initial position selection, and then combine with the frequency band of servo system. The sample data, the selection method of test data and the evaluation method of neural network model are given. Finally, a one-step prediction model structure is obtained, which can accurately predict the output of the next moment by using the actual data from the previous time as input, and the effectiveness of the improved structure and the training algorithm is verified by simulation experiments. Finally, combined with the improved neural network identification scheme for servo system, the open-loop training samples and test data are collected in the actual turntable servo system, and its neural network model is trained. Compared with the model obtained by the traditional frequency sweeping scheme, the feasibility of the neural network used in the practical system modeling is verified.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP183;TM921.54
【參考文獻】
相關(guān)期刊論文 前10條
1 覃業(yè)梅;彭輝;阮文杰;;基于線性函數(shù)型權(quán)重的RBF-ARX模型的磁懸浮球系統(tǒng)預測控制[J];中南大學學報(自然科學版);2016年08期
2 段艷杰;呂宜生;張杰;趙學亮;王飛躍;;深度學習在控制領(lǐng)域的研究現(xiàn)狀與展望[J];自動化學報;2016年05期
3 鄒友龍;胡法龍;周燦燦;李潮流;李長喜;Keh-Jim Dunn;;徑向基函數(shù)插值方法分析(英文)[J];Applied Geophysics;2013年04期
4 王鵬;關(guān)宇東;沈逢京;杜克;提純利;;一種力矩電機轉(zhuǎn)矩波動系數(shù)自動化檢測方法[J];微電機;2013年11期
5 胡巖;關(guān)朕;吳偉;;異步起動永磁同步電動機的轉(zhuǎn)子槽漏抗計算[J];微特電機;2012年09期
6 陳進東;張相勝;潘豐;;基于Wiener模型的非線性預測函數(shù)控制[J];吉林大學學報(工學版);2011年S1期
7 吳德會;;非線性動態(tài)系統(tǒng)的Wiener神經(jīng)網(wǎng)絡(luò)辨識法[J];控制理論與應用;2009年11期
8 田一鳴;黃友銳;高志安;黃宜慶;;基于GA與CSA-RBF神經(jīng)網(wǎng)絡(luò)辨識的自適應PID控制器[J];系統(tǒng)仿真學報;2008年17期
9 張從鵬;劉強;;直線電機定位平臺的摩擦建模與補償[J];北京航空航天大學學報;2008年01期
10 曲東才;;增強神經(jīng)網(wǎng)絡(luò)辨識模型泛化能力的研究[J];海軍航空工程學院學報;2007年01期
相關(guān)博士學位論文 前2條
1 鄭偉峰;交流伺服系統(tǒng)無時滯反饋高響應驅(qū)動控制研究[D];哈爾濱工業(yè)大學;2010年
2 黃進;含摩擦環(huán)節(jié)伺服系統(tǒng)的分析及控制補償研究[D];西安電子科技大學;1998年
相關(guān)碩士學位論文 前5條
1 陳宇飛;機電伺服系統(tǒng)魯棒控制設(shè)計與實現(xiàn)[D];哈爾濱工業(yè)大學;2014年
2 張斯倫;機電伺服系統(tǒng)低速性能分析與控制設(shè)計[D];哈爾濱工業(yè)大學;2013年
3 楊旭;基于RBF神經(jīng)網(wǎng)絡(luò)的工業(yè)過程建模與優(yōu)化研究[D];哈爾濱理工大學;2009年
4 葛翔;基于重復控制方法的高精度速率伺服控制系統(tǒng)設(shè)計[D];哈爾濱工業(yè)大學;2007年
5 張新良;非線性系統(tǒng)神經(jīng)網(wǎng)絡(luò)辨識與控制的研究[D];南京航空航天大學;2004年
,本文編號:2415066
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2415066.html