光伏發(fā)電系統(tǒng)改進(jìn)型最大功率跟蹤算法的研究與應(yīng)用
[Abstract]:Energy is not only the foundation of social development, but also the driving force of economic construction. The unique zero pollution and inexhaustible characteristics of solar energy make it the most ideal clean energy in the world, and solar energy is used to generate electricity is one of the most important uses. The research on photovoltaic power generation system not only provides an effective solution for the sustainable use of energy and environmental protection, but also has an important strategic significance for the stable development of society. The use of maximum power tracking control technology is an effective way to improve the efficiency of photovoltaic power generation system, which has an important impact on photovoltaic power generation industry, and is also a research hotspot in this field. In this paper, photovoltaic power generation system as the research object, aiming at the maximum power tracking problem, the main contents are: 1. According to the equivalent circuit of photovoltaic cell, the mathematical model of photovoltaic cell is deduced, and the model of photovoltaic cell and the simulation platform of the whole photovoltaic system are built by using Matlab/Simulink. The V-I output characteristics of photovoltaic cells are simulated by using the built simulation platform, and the traditional duty cycle disturbance observation method is analyzed and simulated. 2. In this paper, the measurement error of the training data in maximum power point tracking using BP neural network is analyzed. It is pointed out that the accuracy of BP neural network (LS-NN) MPPT algorithm based on least squares depends heavily on the accuracy of training data, and a BP neural network (QLS-NN) MPPT algorithm based on quasi least squares neural network is proposed. The prediction results of two different algorithms are compared by simulation analysis and experimental test. 3. 3. The method of maximum power tracking based on impedance matching principle is also studied in this paper. Based on the theoretical analysis of the traditional impedance matching MPPT algorithm, it is found that the traditional impedance matching MPPT algorithm is sensitive to the system parameters, and an improved dynamic impedance matching MPPT algorithm is proposed. The improved dynamic impedance matching MPPT algorithm proposed in this paper can effectively improve the performance of photovoltaic power generation system through the comparison of simulation and experiment. In this study, the BP neural network MPPT algorithm based on quasi least squares is used to reduce the influence of training samples with measurement error on the prediction of maximum power using neural network, and the robustness of the system is improved. The MPPT algorithm based on improved dynamic impedance matching can effectively solve the problem that the system parameters are set more and the output power is greatly affected by the load for the traditional impedance matching MPPT algorithm. It provides a reference for improving the overall efficiency and stability of photovoltaic power generation system.
【學(xué)位授予單位】:溫州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM615;TP183
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;2030年前全球太陽能光伏發(fā)電能力將強(qiáng)勁增長(zhǎng)[J];石油化工應(yīng)用;2016年09期
2 馬慶強(qiáng);;我國(guó)光伏產(chǎn)業(yè)發(fā)展的現(xiàn)狀、問題及國(guó)際經(jīng)驗(yàn)借鑒[J];上海經(jīng)濟(jì);2016年04期
3 聶曉華;賴家俊;;復(fù)雜應(yīng)用環(huán)境下粒子群光伏MPPT控制方法[J];電力電子技術(shù);2016年01期
4 丁天啟;谷彩連;;基于定步長(zhǎng)擾動(dòng)觀察法的光伏電池最大功率點(diǎn)跟蹤仿真[J];沈陽工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2016年01期
5 高金輝;李國(guó)成;;一種開路電壓和短路電流相結(jié)合的MPPT算法研究[J];電力系統(tǒng)保護(hù)與控制;2015年24期
6 韓麗;尚儀;史麗萍;;基于在線自調(diào)整神經(jīng)網(wǎng)絡(luò)的最大功率跟蹤方法研究[J];太陽能學(xué)報(bào);2015年08期
7 董秀成;皮光林;;能源地緣政治與中國(guó)能源戰(zhàn)略[J];經(jīng)濟(jì)問題;2015年02期
8 張夢(mèng)潔;;英國(guó)將成為歐洲太陽能光伏市場(chǎng)新領(lǐng)頭羊[J];能源研究與利用;2014年04期
9 袁曉玲;施俊華;徐杰彥;;計(jì)及天氣類型指數(shù)的光伏發(fā)電短期出力預(yù)測(cè)[J];中國(guó)電機(jī)工程學(xué)報(bào);2013年34期
10 何耀耀;許啟發(fā);楊善林;余本功;;基于RBF神經(jīng)網(wǎng)絡(luò)分位數(shù)回歸的電力負(fù)荷概率密度預(yù)測(cè)方法[J];中國(guó)電機(jī)工程學(xué)報(bào);2013年01期
相關(guān)會(huì)議論文 前1條
1 傅望;郭珂;周林;;光伏電池工程用數(shù)學(xué)模型研究[A];重慶市電機(jī)工程學(xué)會(huì)2010年學(xué)術(shù)會(huì)議論文集[C];2010年
相關(guān)博士學(xué)位論文 前2條
1 張正江;過程系統(tǒng)的數(shù)據(jù)校正與參數(shù)估計(jì)[D];浙江大學(xué);2010年
2 張超;光伏并網(wǎng)發(fā)電系統(tǒng)MPPT及孤島檢測(cè)新技術(shù)的研究[D];浙江大學(xué);2006年
相關(guān)碩士學(xué)位論文 前6條
1 呂盛華;基于光伏陣列拓?fù)涞娜肿畲蠊β矢櫵惴ㄑ芯縖D];太原理工大學(xué);2016年
2 李帥;基于BP神經(jīng)網(wǎng)絡(luò)的光伏列陣MPPT控制研究[D];東北電力大學(xué);2016年
3 陳建龍;電動(dòng)汽車的雙向DC-DC變換器的研究[D];哈爾濱工業(yè)大學(xué);2015年
4 劉國(guó)勝;基于偏差調(diào)節(jié)的最大功率點(diǎn)跟蹤技術(shù)比較研究[D];燕山大學(xué);2014年
5 王廈楠;獨(dú)立光伏發(fā)電系統(tǒng)及其MPPT的研究[D];南京航空航天大學(xué);2008年
6 郭熠;電動(dòng)汽車雙向DC/DC變換器的研究[D];天津大學(xué);2004年
,本文編號(hào):2414896
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2414896.html