在反卷積網(wǎng)絡(luò)中引入數(shù)值解可視化卷積神經(jīng)網(wǎng)絡(luò)
[Abstract]:The classical deconvolution visualization model restores the feature image to the original image space through deconvolution, deactivation and deconvolution, and visualizes the features that the network node learns from the input image, which is helpful to explore the mechanism of the convolution neural network running well. However, due to the approximate treatment, the reduction characteristics are not obvious. In this paper, numerical method is introduced to replace the inverse approximate deconvolution kernel of convolution kernel in the original model. First, construct the data set: the simple structure with different size, shape and position, and the triangle and rectangle with obvious corner feature, are used to form the gradually complicated data set with hierarchical structure, and the visualization effect of the model is tested by using the data set. The experimental results show that the improved visual model can extract more obvious features and introduce less noise, which can more accurately visualize the features of active network nodes from the original image. Experiments are carried out on a larger database to verify the results, and the results are used to further explore the relationship between accuracy and network structure.
【作者單位】: 中山大學(xué)數(shù)學(xué)學(xué)院;
【基金】:國家自然科學(xué)基金(61272338)資助
【分類號】:TP183
【相似文獻(xiàn)】
相關(guān)期刊論文 前8條
1 張新家,戴冠中,盧滿宏;基于反卷積的系統(tǒng)跳變故障的檢測方法[J];信息與控制;1991年02期
2 沈曉安;;基于支持向量回歸機(jī)的反卷積技術(shù)[J];機(jī)床與液壓;2009年03期
3 王世剛;孫小君;鄧自立;;多模型多傳感器信息融合穩(wěn)態(tài)白噪聲反卷積估值器[J];科學(xué)技術(shù)與工程;2008年02期
4 張三寶,劉文江,聶澤昆;固定區(qū)間最小方差反卷積及其Systolic陣列實現(xiàn)[J];西安交通大學(xué)學(xué)報;1999年11期
5 尤富強(qiáng),田作華,施頌椒;線性時滯系統(tǒng)的H_∞反卷積設(shè)計[J];系統(tǒng)仿真學(xué)報;2005年07期
6 李孝文,唐志剛;利用反卷積改善非線性傳感器的性能[J];傳感技術(shù)學(xué)報;1995年04期
7 王欣;李云;鄧自立;;基于Kalman濾波方法的多傳感器信息融合最優(yōu)白噪聲反卷積濾波器[J];黑龍江大學(xué)自然科學(xué)學(xué)報;2006年02期
8 ;[J];;年期
相關(guān)博士學(xué)位論文 前1條
1 孫小君;最優(yōu)和自校正多傳感器信息融合白噪聲反卷積估值器[D];黑龍江大學(xué);2010年
相關(guān)碩士學(xué)位論文 前2條
1 王佳偉;統(tǒng)一和通用的信息融合白噪聲反卷積估值器[D];黑龍江大學(xué);2007年
2 孫赫;基于現(xiàn)代時間序列分析方法的信息融合反卷積濾波器[D];黑龍江大學(xué);2013年
,本文編號:2355947
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2355947.html