船舶排放污染物智能監(jiān)測系統(tǒng)研究
[Abstract]:The pollution of marine environment caused by the discharge of oil-bearing sewage and sulfide from the waste gas of ships has attracted extensive attention of the international community. Effective monitoring of pollutants discharged from ships plays an important role in the protection of marine environment. Nonlinear deviation affects the detection accuracy. However, there is not a complete set of mature system on the market for on-line monitoring of sulfide and other pollutants in ship exhaust gas. In order to meet the needs of practical application, this paper studies and designs an intelligent monitoring system for marine pollutants. The system mainly includes three parts: the principle prototype of marine oil concentration meter, the principle prototype of sulfur dioxide concentration detection in ship exhaust gas and the monitoring software of upper computer. The main research work of this paper is as follows: (1) The development of marine oil concentration meter prototype. (1) The hardware design of marine oil concentration meter prototype. It mainly includes the design of sensor photoelectric structure, hardware circuit and signal acquisition and processing module. (2) Research on the detection model of marine oil concentration based on Least Squares Support Vector Machine (LS-SVM). For the non-linear deviation caused by bubbles and other interference factors in the traditional detection of marine oil concentration based on turbidity method, which exceeds the detection range of a certain concentration, non-linear compensation is needed. LS-SVM has good application in solving small sample statistics and nonlinear modeling. The experimental results show that it can be used in the development of marine oil concentration meter prototype. (3) Particle Swarm Optimization (PSO) algorithm for LS-SVM-based marine oil content. Concentration detection model parameters optimization research. Aiming at the blindness of parameter selection of marine oil concentration detection model based on LS-SVM, which affects the prediction accuracy of the model, PSO algorithm is used to optimize the parameters of LS-SVM oil concentration detection model. The PSO-LS-SVM oil concentration detection model optimized by particle swarm optimization algorithm has higher accuracy and avoids the problem of model generalization performance degrading due to improper model parameters selection. 2. Research on the denoising algorithm of sulfur dioxide concentration detection signal based on wavelet analysis. Aiming at the fact that the absorption of sulfur dioxide to infrared light is very weak, the detection signal is easily submerged in noise. After amplification and filtering, the signal is still unavoidable from noise caused by amplifier, external environment, radiation source and so on. The wavelet threshold denoising method is used to denoise the noisy signal by using the time domain and frequency domain locality of the wavelet denoising algorithm and the advantages of detecting singularity and abrupt structure of the signal. 3. The upper computer monitoring software of the ship emission intelligent monitoring system based on Lab VIEW software platform is designed.
【學(xué)位授予單位】:江蘇科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP274
【參考文獻】
相關(guān)期刊論文 前10條
1 王靜蕾;喻林;;智能船舶的系統(tǒng)設(shè)計與研究[J];艦船科學(xué)技術(shù);2016年08期
2 李光正;宋新剛;徐瑜;;基于“工業(yè)4.0”的智能船舶系統(tǒng)探討[J];船舶工程;2015年11期
3 梅魏鵬;余淼;師翔;王英;浮潔;張永彩;;小波降噪技術(shù)在差分吸收光譜濃度檢測中的應(yīng)用[J];影像科學(xué)與光化學(xué);2014年02期
4 周秀軍;戴連奎;;基于最小二乘支持向量機的橄欖油摻雜拉曼快速鑒別方法[J];光散射學(xué)報;2013年02期
5 莊媛;趙曉祥;周美華;;水體中油污染狀況及微量油測定方法的比較[J];環(huán)境科學(xué)與技術(shù);2012年06期
6 李兆華;張勁;陳紅兵;張玲玲;康群;封瑛;;中國農(nóng)村水污染狀態(tài)與危害(英文)[J];Agricultural Science & Technology;2012年05期
7 徐麗莎;錢曉山;;基于變異CPSO算法的LSSVM出水COD的軟測量研究[J];環(huán)境工程學(xué)報;2012年05期
8 謝宜煒;孫永明;王亮;劉占國;馬玉麟;王帥軍;;船舶柴油機尾氣檢測系統(tǒng)設(shè)計研究[J];船海工程;2012年01期
9 龍文;焦建軍;龍祖強;;基于PSO優(yōu)化LSSVM的未知模型混沌系統(tǒng)控制[J];物理學(xué)報;2011年11期
10 尹秀麗;薛欽昭;秦偉;;生物傳感技術(shù)在海洋監(jiān)測中的應(yīng)用[J];海洋科學(xué);2011年08期
相關(guān)博士學(xué)位論文 前4條
1 湯斌;紫外—可見光譜水質(zhì)檢測多參數(shù)測量系統(tǒng)的關(guān)鍵技術(shù)研究[D];重慶大學(xué);2014年
2 張弛;煙氣連續(xù)監(jiān)測系統(tǒng)關(guān)鍵技術(shù)的研究[D];天津大學(xué);2012年
3 史云;環(huán)境水體石油類污染現(xiàn)場檢測技術(shù)研究[D];河北農(nóng)業(yè)大學(xué);2009年
4 王清華;光散射法顆粒大小與形狀分析[D];南京工業(yè)大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 楊明亮;三氣體紅外光學(xué)傳感器關(guān)鍵技術(shù)研究[D];中北大學(xué);2015年
2 趙敬曉;紫外—可見光譜法水質(zhì)COD檢測技術(shù)研究[D];重慶大學(xué);2015年
3 王海玲;基于DOAS和支持向量回歸的SO_2濃度檢測方法研究[D];重慶大學(xué);2015年
4 紀(jì)瑩蕾;智能濁度傳感器的研究與設(shè)計[D];中國科學(xué)技術(shù)大學(xué);2014年
5 楊鑫蕊;改進的小波閾值去噪算法研究[D];哈爾濱理工大學(xué);2014年
6 于海波;水中微量油污染在線檢測技術(shù)與實驗研究[D];天津大學(xué);2014年
7 張克銳;新型智能船用油份濃度計的研制[D];集美大學(xué);2013年
8 鄒瑞杰;基于Mie散射的微量油污染在線檢測技術(shù)研究[D];天津大學(xué);2012年
9 王相如;非分散紅外煙氣二氧化硫濃度檢測系統(tǒng)的設(shè)計與實現(xiàn)[D];中北大學(xué);2011年
10 周飛云;船舶排油監(jiān)控系統(tǒng)設(shè)計與實現(xiàn)[D];大連海事大學(xué);2011年
,本文編號:2218712
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2218712.html