兩類脈沖微分方程的概周期性
本文關鍵詞:兩類脈沖微分方程的概周期性
更多相關文章: 脈沖 造血模型 Nicholson飛蠅模型 漸近概周期 偽概周期
【摘要】:本文我們主要研究了兩類脈沖微分方程的概周期型解,全文共分為三章,具體包括如下內容:在第一章中,我們介紹了研究背景,給出了相關的預備知識并且證明了一些引理.在第二章中,我們研究了一類脈沖造血模型的漸近概周期性,得出了解的存在性和指數穩(wěn)定性.在第三章中,我們研究了一類脈沖Nicholson飛蠅模型的偽概周期性,得出了解的存在性和指數穩(wěn)定性.
【關鍵詞】:脈沖 造血模型 Nicholson飛蠅模型 漸近概周期 偽概周期
【學位授予單位】:江西師范大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:O175
【目錄】:
- 中文摘要3-4
- Abstract4-6
- 1 引言6-18
- 1.1 研究背景介紹6-7
- 1.2 本文的主要研究內容7-9
- 1.3 前期工作9-18
- 2 一類脈沖造血模型的漸近概周期性18-26
- 2.1 線性方程18-22
- 2.2 存在性和穩(wěn)定性22-26
- 3 一類脈沖Nicholson飛蠅模型的偽概周期性26-32
- 3.1 線性方程26-28
- 3.2 存在性和穩(wěn)定性28-32
- 參考文獻32-36
- 致謝36-38
- 攻讀碩士學位期間發(fā)表的學術論文38
【相似文獻】
中國期刊全文數據庫 前10條
1 張瑜;王春燕;孫繼濤;;具有可變脈沖點的脈沖微分方程的穩(wěn)定性[J];數學物理學報;2005年06期
2 李建利;李維岳;;凸脈沖微分方程周期解的存在性(英文)[J];懷化學院學報(自然科學);2006年02期
3 譚遠順;陶鳳梅;陳蘭蓀;;狀態(tài)脈沖微分方程研究進展[J];南京師大學報(自然科學版);2007年03期
4 夏正威;;脈沖微分方程的嚴格實用穩(wěn)定性(英文)[J];科學技術與工程;2008年23期
5 張月明,劉玫;一類脈沖微分方程周期解的吸引性[J];山西大學學報(自然科學版);2000年02期
6 石漂漂,李戟;一階混合單調脈沖微分方程解的存在性[J];晉中師范高等?茖W校學報;2002年04期
7 陳蘭蓀;脈沖微分方程與生命科學[J];平頂山師專學報;2002年02期
8 楊晉,張玲玲;脈沖微分方程終值問題的解[J];太原理工大學學報;2003年04期
9 竇家維,李開泰;一類脈沖微分方程零解的穩(wěn)定性[J];系統(tǒng)科學與數學;2004年01期
10 李建利,申建華;脈沖微分方程正解的存在性(英文)[J];數學研究;2004年03期
中國重要會議論文全文數據庫 前2條
1 成登華;吳貴生;;二階非線性脈沖微分方程解的漸近性[A];數學·物理·力學·高新技術研究進展(一九九六·第六期)——中國數學力學物理學高新技術交叉研究會第6屆學術研討會論文集[C];1996年
2 張剛;張偉;;復雜網絡的脈沖同步[A];第八屆全國動力學與控制學術會議論文集[C];2008年
中國博士學位論文全文數據庫 前10條
1 陳華雄;幾類非光滑動力系統(tǒng)的研究[D];華東師范大學;2016年
2 康寶林;基于脈沖微分方程的害蟲治理策略研究[D];大連理工大學;2016年
3 黃明湛;脈沖微分方程在生物控制問題中的若干應用[D];中國林業(yè)科學研究院;2016年
4 焦建軍;脈沖微分方程在生物經濟學中的應用[D];大連理工大學;2008年
5 楊徐昕;脈沖微分方程解的存在性與脈沖生物模型的持久性[D];湖南師范大學;2010年
6 張玉娟;脈沖微分方程在種群生態(tài)管理數學模型研究中的應用[D];大連理工大學;2004年
7 羅治國;脈沖微分方程解的存在性與定性研究[D];湖南師范大學;2004年
8 李秋月;二階脈沖微分方程正解的存在性[D];吉林大學;2012年
9 王鳳筵;周期時變種群系統(tǒng)研究及應用[D];大連理工大學;2006年
10 裴永珍;脈沖微分方程在農業(yè)生態(tài)數學模型中的應用研究[D];大連理工大學;2006年
中國碩士學位論文全文數據庫 前10條
1 鮑俊艷;擾動脈沖微分方程的兩測度穩(wěn)定性[D];河北大學;2004年
2 李遠遠;周期環(huán)境下脈沖微分方程的定性分析及應用[D];溫州大學;2015年
3 劉海玉;具有階段結構脈沖微分方程的動力學行為分析[D];溫州大學;2015年
4 周文娟;變分法與幾類四階脈沖微分方程解的存在性和多解性[D];湖南師范大學;2015年
5 李海明;分數階脈沖微分方程邊值問題解的存在性[D];河北科技大學;2014年
6 高貝貝;森林病蟲害治理的脈沖微分方程模型[D];浙江工業(yè)大學;2015年
7 李金玲;脈沖微分方程的hp-Legendre-Gauss-Radau譜配置方法[D];黑龍江大學;2015年
8 鄭英;幾類二階非線性脈沖系統(tǒng)的定性研究[D];杭州師范大學;2016年
9 王丹;幾類脈沖微分方程正解的存在唯一性[D];太原理工大學;2016年
10 胡琦;四階脈沖微分方程解的存在性[D];湖南師范大學;2016年
,本文編號:575647
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/575647.html