天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 數(shù)學(xué)論文 >

基于Lie-B(?)cklund變換的一類微分差分方程符號(hào)求解

發(fā)布時(shí)間:2021-07-12 00:02
  本文利用Lie對(duì)稱法及Lie-B(?)cklund變換法分別研究1+1維WGC方程和Volterra格方程的對(duì)稱性,獲得了這兩個(gè)方程的Lie對(duì)稱和Lie-B(?)cklund對(duì)稱.本文共由四章組成:第一章是緒論,主要對(duì)Lie對(duì)稱及Lie-B(?)cklund變換方法的研究背景進(jìn)行介紹.第二章是預(yù)備知識(shí),主要講述Lie群的一些概念以及原理算法,從微分、差分、微分差分三個(gè)層面討論Lie對(duì)稱的生成元、延拓及不變?nèi)?第三章運(yùn)用Lie對(duì)稱法研究1+1維WGC方程和Volterra格方程的Lie對(duì)稱.獲得了這兩個(gè)方程的無限維李代數(shù)及對(duì)稱.因?yàn)?+1維WGC方程是一個(gè)有理型的微分差分方程,所以在約化過程中需要考慮其分母的約束條件.而非線性離散Volterra格方程不能直接應(yīng)用離散的Lie對(duì)稱約化方法,為解決這個(gè)問題我們采取相似變換法將其轉(zhuǎn)化為可以使用其進(jìn)行對(duì)稱約化的方程.第四章主要介紹偏微分方程、微分差分方程的Lie-B(?)cklund變換法的一些概念以及原理算法.同時(shí)研究1+1維WGC方程和Volterra格方程的Lie-B(?)cklund變換,并獲得這兩個(gè)方程的約化方程和Lie-B(?)ck... 

【文章來源】:黑龍江大學(xué)黑龍江省

【文章頁數(shù)】:37 頁

【學(xué)位級(jí)別】:碩士

【文章目錄】:
中文摘要
Abstract
第1章 緒論
    1.1 Lie對(duì)稱分析的研究背景
    1.2 微分差分方程對(duì)稱性研究現(xiàn)狀
    1.3 本文的主要內(nèi)容和組織結(jié)構(gòu)
第2章 預(yù)備知識(shí)
    2.1 Lie群的基本概念
    2.2 Lie對(duì)稱分析
        2.2.1 微分方程的不變?nèi)?br>        2.2.2 差分方程的不變?nèi)?br>        2.2.3 微分差分方程的不變?nèi)?br>第3章 微分差分方程的Lie對(duì)稱
    3.1 1+1維WGC方程的Lie對(duì)稱
    3.2 Volterra格方程的Lie對(duì)稱
第4章 微分差分方程的Lie-B(?)cklund變換
    4.1 偏微分方程的Lie-B(?)cklund變換
    4.2 微分差分方程的Lie-B(?)cklund變換
    4.3 1+1維WGC方程的Lie-B(?)cklund變換
    4.4 Volterra格方程的Lie-B(?)cklund變換
結(jié)論
參考文獻(xiàn)
致謝
攻讀學(xué)位期間發(fā)表的學(xué)術(shù)論文



本文編號(hào):3278769

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/yysx/3278769.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶146e9***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com