天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 數(shù)學(xué)論文 >

認(rèn)知模型的自動(dòng)提取及其在解析幾何問題求解中的應(yīng)用

發(fā)布時(shí)間:2019-04-26 19:34
【摘要】:隨著科學(xué)技術(shù)的發(fā)展,近年來,人們對(duì)人工智能的研究熱情可謂如火如荼。在許多領(lǐng)域取得了重大突破,例如:google的AlphaGo就是著名一例,機(jī)器戰(zhàn)勝了人類,是人工智能領(lǐng)域的一個(gè)新標(biāo)桿,具有劃時(shí)代的意義。人工智能在語音識(shí)別、人臉識(shí)別、自動(dòng)駕駛、智能搜索、博弈、定理證明等領(lǐng)域得到了廣泛應(yīng)用。在教育教學(xué)方面,也陸續(xù)出現(xiàn)各種教學(xué)教輔平臺(tái),迄今為止,市場(chǎng)上還沒有真正意義上的智能產(chǎn)品,能夠像人一樣的解答問題,并給出解題步驟。本文正是在這個(gè)背景下,研究和構(gòu)建了基于規(guī)則流的認(rèn)知模型,并將其應(yīng)用于平面解析幾何問題求解,設(shè)計(jì)和實(shí)現(xiàn)了一個(gè)類人智能答題系統(tǒng),更好地為智能教育教學(xué)提供服務(wù)。本文主要研究?jī)?nèi)容包括以下幾個(gè)部分:(1)初等數(shù)學(xué)概念與關(guān)系的知識(shí)表示。計(jì)算機(jī)進(jìn)行初等數(shù)學(xué)解題的前提是必須能夠理解其中的概念。本文將這些概念抽象為“實(shí)體”和“關(guān)系”,然后為這些實(shí)體和關(guān)系表示成一階謂詞邏輯的形式。這樣,就可以把一個(gè)題目的已知條件和結(jié)論進(jìn)行自動(dòng)轉(zhuǎn)換,然后系統(tǒng)就可基于這些已知條件及結(jié)論進(jìn)行解題。(2)公理和定理等規(guī)則的知識(shí)表示。要想計(jì)算機(jī)能夠進(jìn)行類人答題,其每一步計(jì)算或推理都必須遵循相應(yīng)的數(shù)學(xué)邏輯,而這些數(shù)學(xué)邏輯就是初等數(shù)學(xué)中的公理、定義、定理和推論等。本文將每一個(gè)公理、定理等表示成相應(yīng)的產(chǎn)生式規(guī)則。(3)基于規(guī)則流的認(rèn)知模型的自動(dòng)構(gòu)建。規(guī)則庫中的規(guī)則在匹配執(zhí)行的時(shí)候,是亂序的,不確定的,如果我們把執(zhí)行頻率比較高的規(guī)則提取出來,經(jīng)過一定的拼接整理,形成認(rèn)知模型鏈,存儲(chǔ)在認(rèn)知模型庫中,供下次解題使用,那么系統(tǒng)的推理就具有了方向性和目的性。(4)基于認(rèn)知模型的解析幾何問題求解系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)。由于認(rèn)知模型使推理具有了目的性,減少了無效規(guī)則的匹配,所以基于認(rèn)知模型的解析幾何求解系統(tǒng)會(huì)在效率上有所提高。基于構(gòu)建的認(rèn)知推理模型,設(shè)計(jì)和實(shí)現(xiàn)了一個(gè)解析幾何問題求解系統(tǒng),可進(jìn)行自動(dòng)類人答題。通過大量的實(shí)驗(yàn)驗(yàn)證,系統(tǒng)的問題求解效率得到了較大提高,問題求解準(zhǔn)確率可達(dá)60%。
[Abstract]:With the development of science and technology, in recent years, people's enthusiasm for artificial intelligence research can be said to be in full swing. Great breakthroughs have been made in many fields, for example: google's AlphaGo is a famous example, the machine defeated the human being, is a new benchmark in the field of artificial intelligence, has the epoch-making significance. Artificial intelligence is widely used in speech recognition, face recognition, autopilot, intelligent search, game, theorem proving and so on. In the aspect of education and teaching, a variety of teaching-assisted platforms have appeared one after another. Up to now, there are no real intelligent products in the market, which can solve problems like people and give the steps to solve the problems. Under this background, this paper studies and constructs a cognitive model based on rule flow, and applies it to solving plane analytic geometry problems, designs and implements a human-like intelligent problem answering system, and provides better services for intelligent education and teaching. The main contents of this paper are as follows: (1) knowledge representation of elementary mathematical concepts and relationships. The premise of computer solving elementary mathematics problem is that it must be able to understand its concept. In this paper, these concepts are abstracted as "entity" and "relation", and then expressed in the form of first-order predicate logic for these entities and relationships. In this way, the known conditions and conclusions of a problem can be automatically transformed, and then the system can solve the problem based on these known conditions and conclusions. (2) the knowledge representation of axioms and theorems and other rules. In order for a computer to be able to answer a class of questions, each step of its calculation or reasoning must follow the corresponding mathematical logic, which is axioms, definitions, theorems and corollaries in elementary mathematics. In this paper, each axiom, theorem and so on are expressed as corresponding production rules. (3) automatic construction of cognitive model based on rule flow. The rules in the rule base are random and uncertain when they are matched and executed. If we extract the rules with high frequency of execution and sort them together to form a cognitive model chain, we can store them in the cognitive model library. For the next time, the reasoning of the system has the directivity and purpose. (4) the design and implementation of the analytic geometry problem solving system based on cognitive model. Because the cognitive model makes reasoning purposeful and reduces the matching of invalid rules, the analytic geometric solution system based on cognitive model can improve the efficiency of the system. Based on the cognitive reasoning model, an analytic geometry problem solving system is designed and implemented. Through a large number of experiments, the problem-solving efficiency of the system is greatly improved, and the accuracy of the problem-solving is up to 60%.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O182

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 史夢(mèng)潔;;文本聚類算法綜述[J];現(xiàn)代計(jì)算機(jī)(專業(yè)版);2014年03期

2 唐長(zhǎng)城;楊峰;代棟;孫明明;周學(xué)海;;一種基于HBase的數(shù)據(jù)持久性和可用性研究[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2013年10期

3 江日念;林霞;喬德新;;Maven在Java項(xiàng)目中的引入及應(yīng)用[J];電腦知識(shí)與技術(shù);2013年21期

4 雷映喜;習(xí)淑婷;彭俊峰;周應(yīng)光;;XML與JSON在WEB中對(duì)數(shù)據(jù)封裝解析的對(duì)比[J];價(jià)值工程;2013年09期

5 王羨;周建洋;龍霞;;Grbner基與聯(lián)立方程式的解法[J];中國(guó)礦業(yè)大學(xué)學(xué)報(bào);2013年02期

6 朱苗苗;牛國(guó)鋒;;知識(shí)表示方法的研究與分析[J];科技視界;2012年28期

7 蔡軍;韓慶蘭;;基于并行工程的產(chǎn)生-框架式成本知識(shí)模式構(gòu)建[J];財(cái)會(huì)通訊;2011年32期

8 呂有秀;;中學(xué)生數(shù)學(xué)解題能力的培養(yǎng)[J];中學(xué)教學(xué)參考;2011年22期

9 張家華;張劍平;;學(xué)習(xí)過程信息加工模型的演變與思考[J];電化教育研究;2011年01期

10 李濤;;例談數(shù)學(xué)解題中對(duì)隱含條件的挖掘[J];河北理科教學(xué)研究;2010年03期

相關(guān)碩士學(xué)位論文 前2條

1 馮曉輝;概念圖知識(shí)表示方法的研究與實(shí)踐[D];西安建筑科技大學(xué);2009年

2 楊靖;領(lǐng)域本體自動(dòng)構(gòu)建的關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2008年

,

本文編號(hào):2466333

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2466333.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1ee69***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com